Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Différenciez en utilisant la règle de la constante.
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Divisez par .
Étape 2.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.5
Simplifiez .
Étape 2.5.1
Réécrivez comme .
Étape 2.5.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.6
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Multipliez par en additionnant les exposants.
Étape 4.1.2.1.1.1
Multipliez par .
Étape 4.1.2.1.1.1.1
Élevez à la puissance .
Étape 4.1.2.1.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.2.1.1.2
Additionnez et .
Étape 4.1.2.1.2
Élevez à la puissance .
Étape 4.1.2.1.3
Multipliez par .
Étape 4.1.2.2
Simplifiez en soustrayant des nombres.
Étape 4.1.2.2.1
Soustrayez de .
Étape 4.1.2.2.2
Soustrayez de .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Élevez à la puissance .
Étape 4.2.2.1.2
Multipliez par .
Étape 4.2.2.1.3
Multipliez par .
Étape 4.2.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.2.2.2.1
Additionnez et .
Étape 4.2.2.2.2
Soustrayez de .
Étape 4.3
Indiquez tous les points.
Étape 5