Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=(4-t^2)(1+5t^2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Comme , l’équation sera toujours vraie.
Toujours vrai
Toujours vrai
Étape 3
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé
Étape 4
Aucun point ne rend la dérivée égale à ni indéfinie. L’intervalle pour vérifier si est croissant ou décroissant est .
Étape 5
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée pour vérifier si le résultat est négatif ou positif. Si le résultat est négatif, le graphe est décroissant sur l’intervalle . Si le résultat est positif, le graphe est croissant sur l’intervalle .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
La réponse finale est .
Étape 6
Le résultat du remplacement de dans est , qui est positif, si bien que le graphe est croissant sur l’intervalle .
Augmente sur depuis
Étape 7
Augmente sur l’intervalle signifie que la fonction est toujours croissante.
Toujours croissant
Étape 8