Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.2
Déplacez à gauche de .
Étape 1.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.6
Simplifiez l’expression.
Étape 1.1.2.6.1
Additionnez et .
Étape 1.1.2.6.2
Multipliez par .
Étape 1.1.3
Élevez à la puissance .
Étape 1.1.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.5
Additionnez et .
Étape 1.1.6
Simplifiez
Étape 1.1.6.1
Appliquez la propriété distributive.
Étape 1.1.6.2
Appliquez la propriété distributive.
Étape 1.1.6.3
Simplifiez le numérateur.
Étape 1.1.6.3.1
Simplifiez chaque terme.
Étape 1.1.6.3.1.1
Multipliez par en additionnant les exposants.
Étape 1.1.6.3.1.1.1
Déplacez .
Étape 1.1.6.3.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6.3.1.1.3
Additionnez et .
Étape 1.1.6.3.1.2
Multipliez par .
Étape 1.1.6.3.2
Soustrayez de .
Étape 1.1.6.4
Factorisez à partir de .
Étape 1.1.6.4.1
Factorisez à partir de .
Étape 1.1.6.4.2
Factorisez à partir de .
Étape 1.1.6.4.3
Factorisez à partir de .
Étape 1.1.6.5
Simplifiez le dénominateur.
Étape 1.1.6.5.1
Réécrivez comme .
Étape 1.1.6.5.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.1.6.5.3
Appliquez la règle de produit à .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Étape 2.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3.2
Définissez égal à et résolvez .
Étape 2.3.2.1
Définissez égal à .
Étape 2.3.2.2
Résolvez pour .
Étape 2.3.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3.2.2.2
Simplifiez .
Étape 2.3.2.2.2.1
Réécrivez comme .
Étape 2.3.2.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.2.2.2.3
Plus ou moins est .
Étape 2.3.3
Définissez égal à et résolvez .
Étape 2.3.3.1
Définissez égal à .
Étape 2.3.3.2
Résolvez pour .
Étape 2.3.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3.3.2.3
Simplifiez .
Étape 2.3.3.2.3.1
Réécrivez comme .
Étape 2.3.3.2.3.1.1
Factorisez à partir de .
Étape 2.3.3.2.3.1.2
Réécrivez comme .
Étape 2.3.3.2.3.2
Extrayez les termes de sous le radical.
Étape 2.3.3.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3.3.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.3.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.3.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Étape 4.2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2.2
Définissez égal à et résolvez .
Étape 4.2.2.1
Définissez égal à .
Étape 4.2.2.2
Résolvez pour .
Étape 4.2.2.2.1
Définissez le égal à .
Étape 4.2.2.2.2
Soustrayez des deux côtés de l’équation.
Étape 4.2.3
Définissez égal à et résolvez .
Étape 4.2.3.1
Définissez égal à .
Étape 4.2.3.2
Résolvez pour .
Étape 4.2.3.2.1
Définissez le égal à .
Étape 4.2.3.2.2
Ajoutez aux deux côtés de l’équation.
Étape 4.2.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4.3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 5
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez le numérateur.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Soustrayez de .
Étape 6.2.1.3
Élevez à la puissance .
Étape 6.2.2
Simplifiez le dénominateur.
Étape 6.2.2.1
Additionnez et .
Étape 6.2.2.2
Soustrayez de .
Étape 6.2.2.3
Élevez à la puissance .
Étape 6.2.2.4
Élevez à la puissance .
Étape 6.2.3
Simplifiez l’expression.
Étape 6.2.3.1
Multipliez par .
Étape 6.2.3.2
Multipliez par .
Étape 6.2.3.3
Divisez par .
Étape 6.2.4
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez le numérateur.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Soustrayez de .
Étape 7.2.1.3
Élevez à la puissance .
Étape 7.2.2
Simplifiez le dénominateur.
Étape 7.2.2.1
Additionnez et .
Étape 7.2.2.2
Soustrayez de .
Étape 7.2.2.3
Élevez à la puissance .
Étape 7.2.2.4
Élevez à la puissance .
Étape 7.2.3
Simplifiez l’expression.
Étape 7.2.3.1
Multipliez par .
Étape 7.2.3.2
Multipliez par .
Étape 7.2.3.3
Divisez par .
Étape 7.2.4
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Simplifiez le numérateur.
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Soustrayez de .
Étape 8.2.1.3
Élevez à la puissance .
Étape 8.2.1.4
Multipliez par .
Étape 8.2.2
Simplifiez le dénominateur.
Étape 8.2.2.1
Additionnez et .
Étape 8.2.2.2
Soustrayez de .
Étape 8.2.2.3
Un à n’importe quelle puissance est égal à un.
Étape 8.2.2.4
Élevez à la puissance .
Étape 8.2.2.5
Multipliez par .
Étape 8.2.3
Placez le signe moins devant la fraction.
Étape 8.2.4
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 9
Étape 9.1
Remplacez la variable par dans l’expression.
Étape 9.2
Simplifiez le résultat.
Étape 9.2.1
Simplifiez le numérateur.
Étape 9.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 9.2.1.2
Soustrayez de .
Étape 9.2.1.3
Un à n’importe quelle puissance est égal à un.
Étape 9.2.1.4
Multipliez par .
Étape 9.2.2
Simplifiez le dénominateur.
Étape 9.2.2.1
Additionnez et .
Étape 9.2.2.2
Soustrayez de .
Étape 9.2.2.3
Élevez à la puissance .
Étape 9.2.2.4
Élevez à la puissance .
Étape 9.2.3
Simplifiez l’expression.
Étape 9.2.3.1
Multipliez par .
Étape 9.2.3.2
Placez le signe moins devant la fraction.
Étape 9.2.4
La réponse finale est .
Étape 9.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 10
Étape 10.1
Remplacez la variable par dans l’expression.
Étape 10.2
Simplifiez le résultat.
Étape 10.2.1
Simplifiez le numérateur.
Étape 10.2.1.1
Élevez à la puissance .
Étape 10.2.1.2
Soustrayez de .
Étape 10.2.1.3
Élevez à la puissance .
Étape 10.2.2
Simplifiez le dénominateur.
Étape 10.2.2.1
Additionnez et .
Étape 10.2.2.2
Soustrayez de .
Étape 10.2.2.3
Élevez à la puissance .
Étape 10.2.2.4
Élevez à la puissance .
Étape 10.2.3
Simplifiez l’expression.
Étape 10.2.3.1
Multipliez par .
Étape 10.2.3.2
Multipliez par .
Étape 10.2.3.3
Divisez par .
Étape 10.2.4
La réponse finale est .
Étape 10.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 11
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Étape 11.2.1
Simplifiez le numérateur.
Étape 11.2.1.1
Élevez à la puissance .
Étape 11.2.1.2
Soustrayez de .
Étape 11.2.1.3
Élevez à la puissance .
Étape 11.2.2
Simplifiez le dénominateur.
Étape 11.2.2.1
Additionnez et .
Étape 11.2.2.2
Soustrayez de .
Étape 11.2.2.3
Élevez à la puissance .
Étape 11.2.2.4
Élevez à la puissance .
Étape 11.2.3
Simplifiez l’expression.
Étape 11.2.3.1
Multipliez par .
Étape 11.2.3.2
Multipliez par .
Étape 11.2.3.3
Divisez par .
Étape 11.2.4
La réponse finale est .
Étape 11.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 12
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 13