Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=(1+x^2)/(1-x^2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.3
Additionnez et .
Étape 1.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.5
Déplacez à gauche de .
Étape 1.1.2.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.8
Additionnez et .
Étape 1.1.2.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.10
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.10.1
Multipliez par .
Étape 1.1.2.10.2
Multipliez par .
Étape 1.1.2.11
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.12
Déplacez à gauche de .
Étape 1.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Appliquez la propriété distributive.
Étape 1.1.3.2
Appliquez la propriété distributive.
Étape 1.1.3.3
Appliquez la propriété distributive.
Étape 1.1.3.4
Appliquez la propriété distributive.
Étape 1.1.3.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.5.1.1
Multipliez par .
Étape 1.1.3.5.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.5.1.2.1
Déplacez .
Étape 1.1.3.5.1.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.5.1.2.2.1
Élevez à la puissance .
Étape 1.1.3.5.1.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.3.5.1.2.3
Additionnez et .
Étape 1.1.3.5.1.3
Multipliez par .
Étape 1.1.3.5.1.4
Multipliez par .
Étape 1.1.3.5.1.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.5.1.5.1
Déplacez .
Étape 1.1.3.5.1.5.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.5.1.5.2.1
Élevez à la puissance .
Étape 1.1.3.5.1.5.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.3.5.1.5.3
Additionnez et .
Étape 1.1.3.5.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.5.2.1
Additionnez et .
Étape 1.1.3.5.2.2
Additionnez et .
Étape 1.1.3.5.3
Additionnez et .
Étape 1.1.3.6
Remettez les termes dans l’ordre.
Étape 1.1.3.7
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.7.1
Réécrivez comme .
Étape 1.1.3.7.2
Remettez dans l’ordre et .
Étape 1.1.3.7.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.1.3.7.4
Appliquez la règle de produit à .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Divisez par .
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Déterminez où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2.2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Définissez égal à .
Étape 4.2.2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Définissez le égal à .
Étape 4.2.2.2.2
Soustrayez des deux côtés de l’équation.
Étape 4.2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Définissez égal à .
Étape 4.2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.2.1
Définissez le égal à .
Étape 4.2.3.2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.2.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.3.2.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.2.2.2.1
Divisez chaque terme dans par .
Étape 4.2.3.2.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.2.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.2.3.2.2.2.2.2
Divisez par .
Étape 4.2.3.2.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.2.2.2.3.1
Divisez par .
Étape 4.2.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4.3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 5
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Supprimez les parenthèses.
Étape 6.2.1.2
Multipliez par .
Étape 6.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Multipliez par .
Étape 6.2.2.3
Additionnez et .
Étape 6.2.2.4
Élevez à la puissance .
Étape 6.2.2.5
Élevez à la puissance .
Étape 6.2.2.6
Multipliez par .
Étape 6.2.3
Placez le signe moins devant la fraction.
Étape 6.2.4
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Supprimez les parenthèses.
Étape 7.2.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Multipliez par .
Étape 7.2.2.2
Associez et .
Étape 7.2.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.3.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 7.2.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.2.3.3
Soustrayez de .
Étape 7.2.3.4
Appliquez la règle de produit à .
Étape 7.2.3.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.3.5.1
Multipliez par .
Étape 7.2.3.5.2
Multipliez par .
Étape 7.2.3.6
Écrivez comme une fraction avec un dénominateur commun.
Étape 7.2.3.7
Associez les numérateurs sur le dénominateur commun.
Étape 7.2.3.8
Additionnez et .
Étape 7.2.3.9
Appliquez la règle de produit à .
Étape 7.2.3.10
Un à n’importe quelle puissance est égal à un.
Étape 7.2.3.11
Élevez à la puissance .
Étape 7.2.3.12
Élevez à la puissance .
Étape 7.2.3.13
Élevez à la puissance .
Étape 7.2.4
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.4.1
Divisez par .
Étape 7.2.4.2
Multipliez par .
Étape 7.2.4.3
Multipliez par .
Étape 7.2.5
Multipliez le numérateur par la réciproque du dénominateur.
Étape 7.2.6
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.6.1
Associez et .
Étape 7.2.6.2
Multipliez par .
Étape 7.2.7
Placez le signe moins devant la fraction.
Étape 7.2.8
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Supprimez les parenthèses.
Étape 8.2.1.2
Associez et .
Étape 8.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.2.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 8.2.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.2.2.3
Additionnez et .
Étape 8.2.2.4
Appliquez la règle de produit à .
Étape 8.2.2.5
Écrivez comme une fraction avec un dénominateur commun.
Étape 8.2.2.6
Associez les numérateurs sur le dénominateur commun.
Étape 8.2.2.7
Soustrayez de .
Étape 8.2.2.8
Appliquez la règle de produit à .
Étape 8.2.2.9
Élevez à la puissance .
Étape 8.2.2.10
Élevez à la puissance .
Étape 8.2.2.11
Un à n’importe quelle puissance est égal à un.
Étape 8.2.2.12
Élevez à la puissance .
Étape 8.2.3
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.3.1
Divisez par .
Étape 8.2.3.2
Multipliez par .
Étape 8.2.3.3
Multipliez par .
Étape 8.2.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 8.2.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.5.1
Associez et .
Étape 8.2.5.2
Multipliez par .
Étape 8.2.6
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 9
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Remplacez la variable par dans l’expression.
Étape 9.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1.1
Supprimez les parenthèses.
Étape 9.2.1.2
Multipliez par .
Étape 9.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1
Additionnez et .
Étape 9.2.2.2
Multipliez par .
Étape 9.2.2.3
Soustrayez de .
Étape 9.2.2.4
Élevez à la puissance .
Étape 9.2.2.5
Élevez à la puissance .
Étape 9.2.3
Multipliez par .
Étape 9.2.4
La réponse finale est .
Étape 9.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 10
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 11