Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=-4/(x^2-2x-3)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle multiple constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Placez le signe moins devant la fraction.
Étape 1.1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.3
Réécrivez comme .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Multipliez par .
Étape 1.1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.6
Multipliez par .
Étape 1.1.3.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.8
Additionnez et .
Étape 1.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Associez et .
Étape 1.1.5.2
Réorganisez les facteurs de .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.1
Divisez chaque terme dans par .
Étape 2.3.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.2.1.1
Annulez le facteur commun.
Étape 2.3.2.2.2.1.2
Divisez par .
Étape 2.3.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.3.1
Divisez par .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Définissez le numérateur égal à zéro.
Étape 2.4.2.2
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Aucune solution
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Déterminez où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.2.1.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.2.1.2
Appliquez la règle de produit à .
Étape 4.2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Définissez égal à .
Étape 4.2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.2.1
Définissez le égal à .
Étape 4.2.3.2.2
Ajoutez aux deux côtés de l’équation.
Étape 4.2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Définissez égal à .
Étape 4.2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.2.1
Définissez le égal à .
Étape 4.2.4.2.2
Soustrayez des deux côtés de l’équation.
Étape 4.2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4.3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 5
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Additionnez et .
Étape 6.2.1.4
Soustrayez de .
Étape 6.2.1.5
Élevez à la puissance .
Étape 6.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Multipliez par .
Étape 6.2.2.2
Soustrayez de .
Étape 6.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Associez et .
Étape 6.2.3.2
Multipliez par .
Étape 6.2.4
Placez le signe moins devant la fraction.
Étape 6.2.5
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
L’élévation de à toute puissance positive produit .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Additionnez et .
Étape 7.2.1.4
Soustrayez de .
Étape 7.2.1.5
Élevez à la puissance .
Étape 7.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Multipliez par .
Étape 7.2.2.2
Soustrayez de .
Étape 7.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.3.1
Associez et .
Étape 7.2.3.2
Multipliez par .
Étape 7.2.4
Placez le signe moins devant la fraction.
Étape 7.2.5
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Multipliez par .
Étape 8.2.1.3
Soustrayez de .
Étape 8.2.1.4
Soustrayez de .
Étape 8.2.1.5
Élevez à la puissance .
Étape 8.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.2.1
Multipliez par .
Étape 8.2.2.2
Soustrayez de .
Étape 8.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.3.1
Associez et .
Étape 8.2.3.2
Multipliez par .
Étape 8.2.4
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 9
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Remplacez la variable par dans l’expression.
Étape 9.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1.1
Élevez à la puissance .
Étape 9.2.1.2
Multipliez par .
Étape 9.2.1.3
Soustrayez de .
Étape 9.2.1.4
Soustrayez de .
Étape 9.2.1.5
Élevez à la puissance .
Étape 9.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.2.1
Multipliez par .
Étape 9.2.2.2
Soustrayez de .
Étape 9.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 9.2.3.1
Associez et .
Étape 9.2.3.2
Multipliez par .
Étape 9.2.4
La réponse finale est .
Étape 9.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 10
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 11