Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.1.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Simplifiez l’expression.
Étape 1.1.2.3.1
Multipliez par .
Étape 1.1.2.3.2
Déplacez à gauche de .
Étape 1.1.2.3.3
Réécrivez comme .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Aucune solution
Aucune solution
Étape 3
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé
Étape 4
Aucun point ne rend la dérivée égale à ni indéfinie. L’intervalle pour vérifier si est croissant ou décroissant est .
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Multipliez par .
Étape 5.2.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 5.2.3
Multipliez .
Étape 5.2.3.1
Remettez dans l’ordre et .
Étape 5.2.3.2
Simplifiez en déplaçant dans le logarithme.
Étape 5.2.4
La réponse finale est .
Étape 6
Le résultat du remplacement de dans est , qui est négatif, si bien que le graphe est décroissant sur l’intervalle .
Diminue sur
Étape 7
Diminue sur l’intervalle signifie que la fonction est toujours décroissante.
Toujours décroissant
Étape 8