Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Réécrivez comme .
Étape 1.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.4
Multipliez par .
Étape 1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5
Simplifiez
Étape 1.1.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.5.2
Associez des termes.
Étape 1.1.5.2.1
Associez et .
Étape 1.1.5.2.2
Placez le signe moins devant la fraction.
Étape 1.1.5.2.3
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.3.1
Multipliez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Simplifiez chaque terme.
Étape 2.3.2.1.1
Multipliez par en additionnant les exposants.
Étape 2.3.2.1.1.1
Déplacez .
Étape 2.3.2.1.1.2
Multipliez par .
Étape 2.3.2.1.1.2.1
Élevez à la puissance .
Étape 2.3.2.1.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.2.1.1.3
Additionnez et .
Étape 2.3.2.1.2
Annulez le facteur commun de .
Étape 2.3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2.1.2.2
Annulez le facteur commun.
Étape 2.3.2.1.2.3
Réécrivez l’expression.
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Multipliez par .
Étape 2.4
Résolvez l’équation.
Étape 2.4.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.2
Soustrayez des deux côtés de l’équation.
Étape 2.4.3
Factorisez le côté gauche de l’équation.
Étape 2.4.3.1
Factorisez à partir de .
Étape 2.4.3.1.1
Factorisez à partir de .
Étape 2.4.3.1.2
Factorisez à partir de .
Étape 2.4.3.1.3
Factorisez à partir de .
Étape 2.4.3.2
Réécrivez comme .
Étape 2.4.3.3
Réécrivez comme .
Étape 2.4.3.4
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la différence des cubes, où et .
Étape 2.4.3.5
Factorisez.
Étape 2.4.3.5.1
Simplifiez
Étape 2.4.3.5.1.1
Appliquez la règle de produit à .
Étape 2.4.3.5.1.2
Élevez à la puissance .
Étape 2.4.3.5.1.3
Multipliez par .
Étape 2.4.3.5.1.4
Élevez à la puissance .
Étape 2.4.3.5.2
Supprimez les parenthèses inutiles.
Étape 2.4.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4.5
Définissez égal à et résolvez .
Étape 2.4.5.1
Définissez égal à .
Étape 2.4.5.2
Résolvez pour .
Étape 2.4.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.4.5.2.2.1
Divisez chaque terme dans par .
Étape 2.4.5.2.2.2
Simplifiez le côté gauche.
Étape 2.4.5.2.2.2.1
Annulez le facteur commun de .
Étape 2.4.5.2.2.2.1.1
Annulez le facteur commun.
Étape 2.4.5.2.2.2.1.2
Divisez par .
Étape 2.4.6
Définissez égal à et résolvez .
Étape 2.4.6.1
Définissez égal à .
Étape 2.4.6.2
Résolvez pour .
Étape 2.4.6.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.4.6.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.4.6.2.3
Simplifiez
Étape 2.4.6.2.3.1
Simplifiez le numérateur.
Étape 2.4.6.2.3.1.1
Élevez à la puissance .
Étape 2.4.6.2.3.1.2
Multipliez .
Étape 2.4.6.2.3.1.2.1
Multipliez par .
Étape 2.4.6.2.3.1.2.2
Multipliez par .
Étape 2.4.6.2.3.1.3
Soustrayez de .
Étape 2.4.6.2.3.1.4
Réécrivez comme .
Étape 2.4.6.2.3.1.5
Réécrivez comme .
Étape 2.4.6.2.3.1.6
Réécrivez comme .
Étape 2.4.6.2.3.1.7
Réécrivez comme .
Étape 2.4.6.2.3.1.7.1
Factorisez à partir de .
Étape 2.4.6.2.3.1.7.2
Réécrivez comme .
Étape 2.4.6.2.3.1.8
Extrayez les termes de sous le radical.
Étape 2.4.6.2.3.1.9
Déplacez à gauche de .
Étape 2.4.6.2.3.2
Multipliez par .
Étape 2.4.6.2.3.3
Simplifiez .
Étape 2.4.6.2.4
Simplifiez l’expression pour résoudre la partie du .
Étape 2.4.6.2.4.1
Simplifiez le numérateur.
Étape 2.4.6.2.4.1.1
Élevez à la puissance .
Étape 2.4.6.2.4.1.2
Multipliez .
Étape 2.4.6.2.4.1.2.1
Multipliez par .
Étape 2.4.6.2.4.1.2.2
Multipliez par .
Étape 2.4.6.2.4.1.3
Soustrayez de .
Étape 2.4.6.2.4.1.4
Réécrivez comme .
Étape 2.4.6.2.4.1.5
Réécrivez comme .
Étape 2.4.6.2.4.1.6
Réécrivez comme .
Étape 2.4.6.2.4.1.7
Réécrivez comme .
Étape 2.4.6.2.4.1.7.1
Factorisez à partir de .
Étape 2.4.6.2.4.1.7.2
Réécrivez comme .
Étape 2.4.6.2.4.1.8
Extrayez les termes de sous le radical.
Étape 2.4.6.2.4.1.9
Déplacez à gauche de .
Étape 2.4.6.2.4.2
Multipliez par .
Étape 2.4.6.2.4.3
Simplifiez .
Étape 2.4.6.2.4.4
Remplacez le par .
Étape 2.4.6.2.4.5
Réécrivez comme .
Étape 2.4.6.2.4.6
Factorisez à partir de .
Étape 2.4.6.2.4.7
Factorisez à partir de .
Étape 2.4.6.2.4.8
Placez le signe moins devant la fraction.
Étape 2.4.6.2.5
Simplifiez l’expression pour résoudre la partie du .
Étape 2.4.6.2.5.1
Simplifiez le numérateur.
Étape 2.4.6.2.5.1.1
Élevez à la puissance .
Étape 2.4.6.2.5.1.2
Multipliez .
Étape 2.4.6.2.5.1.2.1
Multipliez par .
Étape 2.4.6.2.5.1.2.2
Multipliez par .
Étape 2.4.6.2.5.1.3
Soustrayez de .
Étape 2.4.6.2.5.1.4
Réécrivez comme .
Étape 2.4.6.2.5.1.5
Réécrivez comme .
Étape 2.4.6.2.5.1.6
Réécrivez comme .
Étape 2.4.6.2.5.1.7
Réécrivez comme .
Étape 2.4.6.2.5.1.7.1
Factorisez à partir de .
Étape 2.4.6.2.5.1.7.2
Réécrivez comme .
Étape 2.4.6.2.5.1.8
Extrayez les termes de sous le radical.
Étape 2.4.6.2.5.1.9
Déplacez à gauche de .
Étape 2.4.6.2.5.2
Multipliez par .
Étape 2.4.6.2.5.3
Simplifiez .
Étape 2.4.6.2.5.4
Remplacez le par .
Étape 2.4.6.2.5.5
Réécrivez comme .
Étape 2.4.6.2.5.6
Factorisez à partir de .
Étape 2.4.6.2.5.7
Factorisez à partir de .
Étape 2.4.6.2.5.8
Placez le signe moins devant la fraction.
Étape 2.4.6.2.6
La réponse finale est la combinaison des deux solutions.
Étape 2.4.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Étape 4.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.2.2
Simplifiez .
Étape 4.2.2.1
Réécrivez comme .
Étape 4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.2.2.3
Plus ou moins est .
Étape 5
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Multipliez par .
Étape 6.2.1.2
Élevez à la puissance .
Étape 6.2.1.3
Divisez par .
Étape 6.2.1.4
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Multipliez par .
Étape 7.2.1.2
Élevez à la puissance .
Étape 7.2.1.3
Divisez par .
Étape 7.2.1.4
Multipliez par .
Étape 7.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Simplifiez chaque terme.
Étape 8.2.1.1
Multipliez par .
Étape 8.2.1.2
Élevez à la puissance .
Étape 8.2.1.3
Divisez par .
Étape 8.2.1.4
Multipliez par .
Étape 8.2.2
Soustrayez de .
Étape 8.2.3
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 9
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 10