Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4
Simplifiez l’expression.
Étape 1.1.2.4.1
Additionnez et .
Étape 1.1.2.4.2
Multipliez par .
Étape 1.1.2.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.8
Simplifiez l’expression.
Étape 1.1.2.8.1
Additionnez et .
Étape 1.1.2.8.2
Multipliez par .
Étape 1.1.3
Simplifiez
Étape 1.1.3.1
Appliquez la propriété distributive.
Étape 1.1.3.2
Appliquez la propriété distributive.
Étape 1.1.3.3
Simplifiez le numérateur.
Étape 1.1.3.3.1
Simplifiez chaque terme.
Étape 1.1.3.3.1.1
Multipliez par en additionnant les exposants.
Étape 1.1.3.3.1.1.1
Déplacez .
Étape 1.1.3.3.1.1.2
Multipliez par .
Étape 1.1.3.3.1.2
Multipliez par .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.4
Remettez les termes dans l’ordre.
Étape 1.1.3.5
Factorisez à partir de .
Étape 1.1.3.6
Factorisez à partir de .
Étape 1.1.3.7
Factorisez à partir de .
Étape 1.1.3.8
Réécrivez comme .
Étape 1.1.3.9
Factorisez à partir de .
Étape 1.1.3.10
Réécrivez comme .
Étape 1.1.3.11
Placez le signe moins devant la fraction.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Étape 2.3.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.3.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.3.3
Simplifiez
Étape 2.3.3.1
Simplifiez le numérateur.
Étape 2.3.3.1.1
Élevez à la puissance .
Étape 2.3.3.1.2
Multipliez .
Étape 2.3.3.1.2.1
Multipliez par .
Étape 2.3.3.1.2.2
Multipliez par .
Étape 2.3.3.1.3
Additionnez et .
Étape 2.3.3.1.4
Réécrivez comme .
Étape 2.3.3.1.4.1
Factorisez à partir de .
Étape 2.3.3.1.4.2
Réécrivez comme .
Étape 2.3.3.1.5
Extrayez les termes de sous le radical.
Étape 2.3.3.2
Multipliez par .
Étape 2.3.3.3
Simplifiez .
Étape 2.3.4
Simplifiez l’expression pour résoudre la partie du .
Étape 2.3.4.1
Simplifiez le numérateur.
Étape 2.3.4.1.1
Élevez à la puissance .
Étape 2.3.4.1.2
Multipliez .
Étape 2.3.4.1.2.1
Multipliez par .
Étape 2.3.4.1.2.2
Multipliez par .
Étape 2.3.4.1.3
Additionnez et .
Étape 2.3.4.1.4
Réécrivez comme .
Étape 2.3.4.1.4.1
Factorisez à partir de .
Étape 2.3.4.1.4.2
Réécrivez comme .
Étape 2.3.4.1.5
Extrayez les termes de sous le radical.
Étape 2.3.4.2
Multipliez par .
Étape 2.3.4.3
Simplifiez .
Étape 2.3.4.4
Remplacez le par .
Étape 2.3.5
Simplifiez l’expression pour résoudre la partie du .
Étape 2.3.5.1
Simplifiez le numérateur.
Étape 2.3.5.1.1
Élevez à la puissance .
Étape 2.3.5.1.2
Multipliez .
Étape 2.3.5.1.2.1
Multipliez par .
Étape 2.3.5.1.2.2
Multipliez par .
Étape 2.3.5.1.3
Additionnez et .
Étape 2.3.5.1.4
Réécrivez comme .
Étape 2.3.5.1.4.1
Factorisez à partir de .
Étape 2.3.5.1.4.2
Réécrivez comme .
Étape 2.3.5.1.5
Extrayez les termes de sous le radical.
Étape 2.3.5.2
Multipliez par .
Étape 2.3.5.3
Simplifiez .
Étape 2.3.5.4
Remplacez le par .
Étape 2.3.6
La réponse finale est la combinaison des deux solutions.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez le numérateur.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Additionnez et .
Étape 5.2.1.4
Soustrayez de .
Étape 5.2.2
Simplifiez le dénominateur.
Étape 5.2.2.1
Élevez à la puissance .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.2.3
Élevez à la puissance .
Étape 5.2.3
Simplifiez l’expression.
Étape 5.2.3.1
Divisez par .
Étape 5.2.3.2
Multipliez par .
Étape 5.2.4
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez le numérateur.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Soustrayez de .
Étape 6.2.1.4
Soustrayez de .
Étape 6.2.2
Simplifiez le dénominateur.
Étape 6.2.2.1
Élevez à la puissance .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.2.3
Élevez à la puissance .
Étape 6.2.3
Simplifiez l’expression.
Étape 6.2.3.1
Divisez par .
Étape 6.2.3.2
Multipliez par .
Étape 6.2.4
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez le numérateur.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Soustrayez de .
Étape 7.2.1.4
Soustrayez de .
Étape 7.2.2
Simplifiez le dénominateur.
Étape 7.2.2.1
Élevez à la puissance .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.2.3
Élevez à la puissance .
Étape 7.2.3
Simplifiez l’expression.
Étape 7.2.3.1
Divisez par .
Étape 7.2.3.2
Multipliez par .
Étape 7.2.4
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 9