Calcul infinitésimal Exemples

Trouver le maximum et le minimum absolus sur l’intervalle f(x)=x racine carrée de 9-x^2 , [-1,3]
,
Étape 1
Déterminez les points critiques.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Utilisez pour réécrire comme .
Étape 1.1.1.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.1.1.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.3.3
Remplacez toutes les occurrences de par .
Étape 1.1.1.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.1.5
Associez et .
Étape 1.1.1.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.1.7
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.7.1
Multipliez par .
Étape 1.1.1.7.2
Soustrayez de .
Étape 1.1.1.8
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.8.1
Placez le signe moins devant la fraction.
Étape 1.1.1.8.2
Associez et .
Étape 1.1.1.8.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.1.1.8.4
Associez et .
Étape 1.1.1.9
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.11
Additionnez et .
Étape 1.1.1.12
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.13
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.14
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.14.1
Multipliez par .
Étape 1.1.1.14.2
Associez et .
Étape 1.1.1.14.3
Associez et .
Étape 1.1.1.15
Élevez à la puissance .
Étape 1.1.1.16
Élevez à la puissance .
Étape 1.1.1.17
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.1.18
Additionnez et .
Étape 1.1.1.19
Factorisez à partir de .
Étape 1.1.1.20
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.20.1
Factorisez à partir de .
Étape 1.1.1.20.2
Annulez le facteur commun.
Étape 1.1.1.20.3
Réécrivez l’expression.
Étape 1.1.1.21
Placez le signe moins devant la fraction.
Étape 1.1.1.22
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.23
Multipliez par .
Étape 1.1.1.24
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.1.25
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.1.26
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.26.1
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.1.26.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.1.26.3
Additionnez et .
Étape 1.1.1.26.4
Divisez par .
Étape 1.1.1.27
Simplifiez .
Étape 1.1.1.28
Soustrayez de .
Étape 1.1.1.29
Remettez les termes dans l’ordre.
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.1
Divisez chaque terme dans par .
Étape 1.2.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.2.1.1
Annulez le facteur commun.
Étape 1.2.3.2.2.1.2
Divisez par .
Étape 1.2.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.2.3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 1.2.3.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.4.1
Réécrivez comme .
Étape 1.2.3.4.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.4.2.1
Réécrivez comme .
Étape 1.2.3.4.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.2.3.4.3
Multipliez par .
Étape 1.2.3.4.4
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.4.4.1
Multipliez par .
Étape 1.2.3.4.4.2
Élevez à la puissance .
Étape 1.2.3.4.4.3
Élevez à la puissance .
Étape 1.2.3.4.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.3.4.4.5
Additionnez et .
Étape 1.2.3.4.4.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.4.4.6.1
Utilisez pour réécrire comme .
Étape 1.2.3.4.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.3.4.4.6.3
Associez et .
Étape 1.2.3.4.4.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.4.4.6.4.1
Annulez le facteur commun.
Étape 1.2.3.4.4.6.4.2
Réécrivez l’expression.
Étape 1.2.3.4.4.6.5
Évaluez l’exposant.
Étape 1.2.3.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.2.3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.2.3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 1.3.1.2
Toute valeur élevée à est la base elle-même.
Étape 1.3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.3.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 1.3.3.2
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.1
Utilisez pour réécrire comme .
Étape 1.3.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.3.3.2.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.2.1.1.2.1
Annulez le facteur commun.
Étape 1.3.3.2.2.1.1.2.2
Réécrivez l’expression.
Étape 1.3.3.2.2.1.2
Simplifiez
Étape 1.3.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 1.3.3.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.1
Soustrayez des deux côtés de l’équation.
Étape 1.3.3.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.2.1
Divisez chaque terme dans par .
Étape 1.3.3.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.3.3.3.2.2.2
Divisez par .
Étape 1.3.3.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.2.3.1
Divisez par .
Étape 1.3.3.3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 1.3.3.3.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.4.1
Réécrivez comme .
Étape 1.3.3.3.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.3.3.3.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.3.3.3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.3.3.3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.3.4
Définissez le radicande dans inférieur à pour déterminer où l’expression est indéfinie.
Étape 1.3.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Soustrayez des deux côtés de l’inégalité.
Étape 1.3.5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.2.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 1.3.5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.3.5.2.2.2
Divisez par .
Étape 1.3.5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.2.3.1
Divisez par .
Étape 1.3.5.3
Prenez la racine spécifiée des deux côtés de l’inégalité pour éliminer l’exposant du côté gauche.
Étape 1.3.5.4
Simplifiez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.4.1.1
Extrayez les termes de sous le radical.
Étape 1.3.5.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.4.2.1.1
Réécrivez comme .
Étape 1.3.5.4.2.1.2
Extrayez les termes de sous le radical.
Étape 1.3.5.4.2.1.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.3.5.5
Écrivez comme fonction définie par morceaux.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.5.1
Pour déterminer l’intervalle pour la première partie, déterminez où l’intérieur de la valeur absolue est non négatif.
Étape 1.3.5.5.2
Dans la partie où est non négatif, retirez la valeur absolue.
Étape 1.3.5.5.3
Pour déterminer l’intervalle pour la deuxième partie, déterminez où l’intérieur de la valeur absolue est négatif.
Étape 1.3.5.5.4
Dans la partie où est négatif, retirez la valeur absolue et multipliez par .
Étape 1.3.5.5.5
Écrivez comme fonction définie par morceaux.
Étape 1.3.5.6
Déterminez l’intersection de et .
Étape 1.3.5.7
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.7.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 1.3.5.7.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.7.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.3.5.7.2.2
Divisez par .
Étape 1.3.5.7.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.7.3.1
Divisez par .
Étape 1.3.5.8
Déterminez l’union des solutions.
ou
ou
Étape 1.3.6
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1.1
Appliquez la règle de produit à .
Étape 1.4.1.2.1.2
Appliquez la règle de produit à .
Étape 1.4.1.2.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.2.1
Élevez à la puissance .
Étape 1.4.1.2.2.2
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.2.2.1
Utilisez pour réécrire comme .
Étape 1.4.1.2.2.2.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.4.1.2.2.2.3
Associez et .
Étape 1.4.1.2.2.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.2.2.4.1
Annulez le facteur commun.
Étape 1.4.1.2.2.2.4.2
Réécrivez l’expression.
Étape 1.4.1.2.2.2.5
Évaluez l’exposant.
Étape 1.4.1.2.3
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.3.1
Élevez à la puissance .
Étape 1.4.1.2.3.2
Multipliez par .
Étape 1.4.1.2.3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.3.3.1
Factorisez à partir de .
Étape 1.4.1.2.3.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.3.3.2.1
Factorisez à partir de .
Étape 1.4.1.2.3.3.2.2
Annulez le facteur commun.
Étape 1.4.1.2.3.3.2.3
Réécrivez l’expression.
Étape 1.4.1.2.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.4.1.2.5
Associez et .
Étape 1.4.1.2.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.4.1.2.7
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.7.1
Multipliez par .
Étape 1.4.1.2.7.2
Soustrayez de .
Étape 1.4.1.2.8
Réécrivez comme .
Étape 1.4.1.2.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.9.1
Réécrivez comme .
Étape 1.4.1.2.9.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.4.1.2.10
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.10.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.10.1.1
Factorisez à partir de .
Étape 1.4.1.2.10.1.2
Annulez le facteur commun.
Étape 1.4.1.2.10.1.3
Réécrivez l’expression.
Étape 1.4.1.2.10.2
Associez et .
Étape 1.4.1.2.10.3
Multipliez par .
Étape 1.4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Remplacez par .
Étape 1.4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.1.1
Appliquez la règle de produit à .
Étape 1.4.2.2.1.2
Appliquez la règle de produit à .
Étape 1.4.2.2.1.3
Appliquez la règle de produit à .
Étape 1.4.2.2.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.2.1
Déplacez .
Étape 1.4.2.2.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.2.2.1
Élevez à la puissance .
Étape 1.4.2.2.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.4.2.2.2.3
Additionnez et .
Étape 1.4.2.2.3
Élevez à la puissance .
Étape 1.4.2.2.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.4.1
Élevez à la puissance .
Étape 1.4.2.2.4.2
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.4.2.1
Utilisez pour réécrire comme .
Étape 1.4.2.2.4.2.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.4.2.2.4.2.3
Associez et .
Étape 1.4.2.2.4.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.4.2.4.1
Annulez le facteur commun.
Étape 1.4.2.2.4.2.4.2
Réécrivez l’expression.
Étape 1.4.2.2.4.2.5
Évaluez l’exposant.
Étape 1.4.2.2.5
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.5.1
Élevez à la puissance .
Étape 1.4.2.2.5.2
Multipliez par .
Étape 1.4.2.2.5.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.5.3.1
Factorisez à partir de .
Étape 1.4.2.2.5.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.5.3.2.1
Factorisez à partir de .
Étape 1.4.2.2.5.3.2.2
Annulez le facteur commun.
Étape 1.4.2.2.5.3.2.3
Réécrivez l’expression.
Étape 1.4.2.2.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.4.2.2.7
Associez et .
Étape 1.4.2.2.8
Associez les numérateurs sur le dénominateur commun.
Étape 1.4.2.2.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.9.1
Multipliez par .
Étape 1.4.2.2.9.2
Soustrayez de .
Étape 1.4.2.2.10
Réécrivez comme .
Étape 1.4.2.2.11
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.11.1
Réécrivez comme .
Étape 1.4.2.2.11.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.4.2.2.12
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.12.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.12.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 1.4.2.2.12.1.2
Factorisez à partir de .
Étape 1.4.2.2.12.1.3
Annulez le facteur commun.
Étape 1.4.2.2.12.1.4
Réécrivez l’expression.
Étape 1.4.2.2.12.2
Associez et .
Étape 1.4.2.2.12.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.12.3.1
Multipliez par .
Étape 1.4.2.2.12.3.2
Placez le signe moins devant la fraction.
Étape 1.4.3
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.1
Remplacez par .
Étape 1.4.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.2.1
Élevez à la puissance .
Étape 1.4.3.2.2
Multipliez par .
Étape 1.4.3.2.3
Soustrayez de .
Étape 1.4.3.2.4
Réécrivez comme .
Étape 1.4.3.2.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.4.3.2.6
Multipliez par .
Étape 1.4.4
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.4.1
Remplacez par .
Étape 1.4.4.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.4.2.1
Élevez à la puissance .
Étape 1.4.4.2.2
Multipliez par .
Étape 1.4.4.2.3
Soustrayez de .
Étape 1.4.4.2.4
Réécrivez comme .
Étape 1.4.4.2.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.4.4.2.6
Multipliez par .
Étape 1.4.5
Indiquez tous les points.
Étape 2
Excluez les points qui ne sont pas sur l’intervalle.
Étape 3
Évaluez sur les points finaux inclus.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Remplacez par .
Étape 3.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1.1.1
Élevez à la puissance .
Étape 3.1.2.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.1.2.1.2
Additionnez et .
Étape 3.1.2.2
Élevez à la puissance .
Étape 3.1.2.3
Soustrayez de .
Étape 3.1.2.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.4.1
Factorisez à partir de .
Étape 3.1.2.4.2
Réécrivez comme .
Étape 3.1.2.5
Extrayez les termes de sous le radical.
Étape 3.1.2.6
Multipliez par .
Étape 3.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Remplacez par .
Étape 3.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Élevez à la puissance .
Étape 3.2.2.2
Multipliez par .
Étape 3.2.2.3
Soustrayez de .
Étape 3.2.2.4
Réécrivez comme .
Étape 3.2.2.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.2.2.6
Multipliez par .
Étape 3.3
Indiquez tous les points.
Étape 4
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 5