Calcul infinitésimal Exemples

Étape 1
Déterminez le sommet de la valeur absolue. Dans ce cas, le sommet de est .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour déterminer la coordonnée du sommet, définissez l’intérieur de la valeur absolue égal à . Dans ce cas, .
Étape 1.2
Remplacez la variable par dans l’expression.
Étape 1.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.3.2
Additionnez et .
Étape 1.3.3
Divisez par .
Étape 1.4
Le sommet de la valeur absolue est .
Étape 2
Déterminez le domaine pour afin de pouvoir sélectionner une liste de valeurs pour déterminer une liste de points et faciliter la représentation graphique de la fonction de valeur absolue.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
Pour chaque valeur , il y a une valeur . Sélectionnez quelques valeurs depuis le domaine. Il serait plus utile de sélectionner les valeurs de sorte qu’elles soient proches de la valeur du sommet de la valeur absolue.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez la valeur dans . Dans ce cas, le point est .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.1.2.2
Additionnez et .
Étape 3.1.2.3
Divisez par .
Étape 3.1.2.4
La réponse finale est .
Étape 3.2
Remplacez la valeur dans . Dans ce cas, le point est .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Remplacez la variable par dans l’expression.
Étape 3.2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.2.2.2
Additionnez et .
Étape 3.2.2.3
La réponse finale est .
Étape 3.3
Remplacez la valeur dans . Dans ce cas, le point est .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.3.2.2
Additionnez et .
Étape 3.3.2.3
La réponse finale est .
Étape 3.4
La valeur absolue peut être représentée avec les points autour du sommet
Étape 4