Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Associez et .
Étape 2
Définissez en fonction de .
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.3
Associez et .
Étape 3.2.4
Associez et .
Étape 3.2.5
Annulez le facteur commun de .
Étape 3.2.5.1
Annulez le facteur commun.
Étape 3.2.5.2
Divisez par .
Étape 3.3
Évaluez .
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.3
Multipliez par .
Étape 4
Soustrayez des deux côtés de l’équation.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.3
Associez et .
Étape 5.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.5
Simplifiez le numérateur.
Étape 5.2.5.1
Multipliez par .
Étape 5.2.5.2
Soustrayez de .
Étape 5.2.6
Placez le signe moins devant la fraction.
Étape 5.2.7
La réponse finale est .
Étape 6
La droite tangente horizontale sur la fonction est .
Étape 7