Calcul infinitésimal Exemples

Trouver la tangente horizontale y(x)=x^4-4x+4
Étape 1
Déterminez la dérivée.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Multipliez par .
Étape 1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Additionnez et .
Étape 2
Définissez la dérivée égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Factorisez à partir de .
Étape 2.3.1.2
Factorisez à partir de .
Étape 2.3.1.3
Factorisez à partir de .
Étape 2.3.2
Réécrivez comme .
Étape 2.3.3
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la différence des cubes, et .
Étape 2.3.4
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.1.1
Multipliez par .
Étape 2.3.4.1.2
Un à n’importe quelle puissance est égal à un.
Étape 2.3.4.2
Supprimez les parenthèses inutiles.
Étape 2.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Ajoutez aux deux côtés de l’équation.
Étape 2.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.6.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.6.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.3.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.6.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.3.1.2.1
Multipliez par .
Étape 2.6.2.3.1.2.2
Multipliez par .
Étape 2.6.2.3.1.3
Soustrayez de .
Étape 2.6.2.3.1.4
Réécrivez comme .
Étape 2.6.2.3.1.5
Réécrivez comme .
Étape 2.6.2.3.1.6
Réécrivez comme .
Étape 2.6.2.3.2
Multipliez par .
Étape 2.6.2.4
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.4.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.6.2.4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.4.1.2.1
Multipliez par .
Étape 2.6.2.4.1.2.2
Multipliez par .
Étape 2.6.2.4.1.3
Soustrayez de .
Étape 2.6.2.4.1.4
Réécrivez comme .
Étape 2.6.2.4.1.5
Réécrivez comme .
Étape 2.6.2.4.1.6
Réécrivez comme .
Étape 2.6.2.4.2
Multipliez par .
Étape 2.6.2.4.3
Remplacez le par .
Étape 2.6.2.4.4
Réécrivez comme .
Étape 2.6.2.4.5
Factorisez à partir de .
Étape 2.6.2.4.6
Factorisez à partir de .
Étape 2.6.2.4.7
Placez le signe moins devant la fraction.
Étape 2.6.2.5
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.5.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.6.2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.5.1.2.1
Multipliez par .
Étape 2.6.2.5.1.2.2
Multipliez par .
Étape 2.6.2.5.1.3
Soustrayez de .
Étape 2.6.2.5.1.4
Réécrivez comme .
Étape 2.6.2.5.1.5
Réécrivez comme .
Étape 2.6.2.5.1.6
Réécrivez comme .
Étape 2.6.2.5.2
Multipliez par .
Étape 2.6.2.5.3
Remplacez le par .
Étape 2.6.2.5.4
Réécrivez comme .
Étape 2.6.2.5.5
Factorisez à partir de .
Étape 2.6.2.5.6
Factorisez à partir de .
Étape 2.6.2.5.7
Placez le signe moins devant la fraction.
Étape 2.6.2.6
La réponse finale est la combinaison des deux solutions.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 3.2.1.2
Multipliez par .
Étape 3.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Soustrayez de .
Étape 3.2.2.2
Additionnez et .
Étape 3.2.3
La réponse finale est .
Étape 4
Il est impossible de déterminer une tangente sur un point imaginaire. Le point sur n’existe pas sur le système de coordonnées réel.
Il est impossible de déterminer une tangente à partir de la racine
Étape 5
Les droites tangentes horizontales sur la fonction sont .
Étape 6