Calcul infinitésimal Exemples

Trouver la tangente horizontale y=2x^3-8x
Étape 1
Définissez en fonction de .
Étape 2
Déterminez la dérivée.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 3
Définissez la dérivée égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Ajoutez aux deux côtés de l’équation.
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.1
Factorisez à partir de .
Étape 3.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.2.1
Factorisez à partir de .
Étape 3.2.3.1.2.2
Annulez le facteur commun.
Étape 3.2.3.1.2.3
Réécrivez l’expression.
Étape 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez comme .
Étape 3.4.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Réécrivez comme .
Étape 3.4.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.4.3
Multipliez par .
Étape 3.4.4
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.4.1
Multipliez par .
Étape 3.4.4.2
Élevez à la puissance .
Étape 3.4.4.3
Élevez à la puissance .
Étape 3.4.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.4.5
Additionnez et .
Étape 3.4.4.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.4.6.1
Utilisez pour réécrire comme .
Étape 3.4.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.4.6.3
Associez et .
Étape 3.4.4.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.4.6.4.1
Annulez le facteur commun.
Étape 3.4.4.6.4.2
Réécrivez l’expression.
Étape 3.4.4.6.5
Évaluez l’exposant.
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Appliquez la règle de produit à .
Étape 4.2.1.1.2
Appliquez la règle de produit à .
Étape 4.2.1.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.2.1
Élevez à la puissance .
Étape 4.2.1.2.2
Réécrivez comme .
Étape 4.2.1.2.3
Élevez à la puissance .
Étape 4.2.1.2.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.2.4.1
Factorisez à partir de .
Étape 4.2.1.2.4.2
Réécrivez comme .
Étape 4.2.1.2.5
Extrayez les termes de sous le radical.
Étape 4.2.1.2.6
Multipliez par .
Étape 4.2.1.3
Élevez à la puissance .
Étape 4.2.1.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.4.1
Factorisez à partir de .
Étape 4.2.1.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.4.2.1
Factorisez à partir de .
Étape 4.2.1.4.2.2
Annulez le facteur commun.
Étape 4.2.1.4.2.3
Réécrivez l’expression.
Étape 4.2.1.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.5.1
Associez et .
Étape 4.2.1.5.2
Multipliez par .
Étape 4.2.1.6
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.6.1
Associez et .
Étape 4.2.1.6.2
Multipliez par .
Étape 4.2.1.7
Placez le signe moins devant la fraction.
Étape 4.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Multipliez par .
Étape 4.2.3.2
Multipliez par .
Étape 4.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Multipliez par .
Étape 4.2.5.2
Soustrayez de .
Étape 4.2.6
Placez le signe moins devant la fraction.
Étape 4.2.7
La réponse finale est .
Étape 5
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Appliquez la règle de produit à .
Étape 5.2.1.1.2
Appliquez la règle de produit à .
Étape 5.2.1.1.3
Appliquez la règle de produit à .
Étape 5.2.1.2
Élevez à la puissance .
Étape 5.2.1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.3.1
Élevez à la puissance .
Étape 5.2.1.3.2
Réécrivez comme .
Étape 5.2.1.3.3
Élevez à la puissance .
Étape 5.2.1.3.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.3.4.1
Factorisez à partir de .
Étape 5.2.1.3.4.2
Réécrivez comme .
Étape 5.2.1.3.5
Extrayez les termes de sous le radical.
Étape 5.2.1.3.6
Multipliez par .
Étape 5.2.1.4
Élevez à la puissance .
Étape 5.2.1.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.5.1
Factorisez à partir de .
Étape 5.2.1.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.5.2.1
Factorisez à partir de .
Étape 5.2.1.5.2.2
Annulez le facteur commun.
Étape 5.2.1.5.2.3
Réécrivez l’expression.
Étape 5.2.1.6
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.6.1
Multipliez par .
Étape 5.2.1.6.2
Associez et .
Étape 5.2.1.6.3
Multipliez par .
Étape 5.2.1.7
Placez le signe moins devant la fraction.
Étape 5.2.1.8
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.8.1
Multipliez par .
Étape 5.2.1.8.2
Associez et .
Étape 5.2.1.8.3
Multipliez par .
Étape 5.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Multipliez par .
Étape 5.2.3.2
Multipliez par .
Étape 5.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.1
Multipliez par .
Étape 5.2.5.2
Additionnez et .
Étape 5.2.6
La réponse finale est .
Étape 6
Les droites tangentes horizontales sur la fonction sont .
Étape 7