Calcul infinitésimal Exemples

Trouver la tangente horizontale y=6x^2+3x-6
Étape 1
Définissez en fonction de .
Étape 2
Déterminez la dérivée.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 2.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Additionnez et .
Étape 3
Définissez la dérivée égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.1
Factorisez à partir de .
Étape 3.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.2.1
Factorisez à partir de .
Étape 3.2.3.1.2.2
Annulez le facteur commun.
Étape 3.2.3.1.2.3
Réécrivez l’expression.
Étape 3.2.3.2
Placez le signe moins devant la fraction.
Étape 4
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Appliquez la règle de produit à .
Étape 4.2.1.1.2
Appliquez la règle de produit à .
Étape 4.2.1.2
Élevez à la puissance .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.1.4
Un à n’importe quelle puissance est égal à un.
Étape 4.2.1.5
Élevez à la puissance .
Étape 4.2.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.6.1
Factorisez à partir de .
Étape 4.2.1.6.2
Factorisez à partir de .
Étape 4.2.1.6.3
Annulez le facteur commun.
Étape 4.2.1.6.4
Réécrivez l’expression.
Étape 4.2.1.7
Associez et .
Étape 4.2.1.8
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.8.1
Multipliez par .
Étape 4.2.1.8.2
Associez et .
Étape 4.2.1.9
Placez le signe moins devant la fraction.
Étape 4.2.2
Déterminez le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Multipliez par .
Étape 4.2.2.2
Multipliez par .
Étape 4.2.2.3
Écrivez comme une fraction avec le dénominateur .
Étape 4.2.2.4
Multipliez par .
Étape 4.2.2.5
Multipliez par .
Étape 4.2.2.6
Réorganisez les facteurs de .
Étape 4.2.2.7
Multipliez par .
Étape 4.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Multipliez par .
Étape 4.2.4.2
Multipliez par .
Étape 4.2.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Soustrayez de .
Étape 4.2.5.2
Soustrayez de .
Étape 4.2.5.3
Placez le signe moins devant la fraction.
Étape 4.2.6
La réponse finale est .
Étape 5
La droite tangente horizontale sur la fonction est .
Étape 6