Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Définissez en fonction de .
Étape 2
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Étape 3.1.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.1.2.2
Divisez par .
Étape 3.1.3
Simplifiez le côté droit.
Étape 3.1.3.1
Divisez par .
Étape 3.2
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
La valeur exacte de est .
Étape 3.4
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 3.5
Soustrayez de .
Étape 3.6
Déterminez la période de .
Étape 3.6.1
La période de la fonction peut être calculée en utilisant .
Étape 3.6.2
Remplacez par dans la formule pour la période.
Étape 3.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.6.4
Divisez par .
Étape 3.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 3.8
Consolidez les réponses.
, pour tout entier
, pour tout entier
Étape 4
Étape 4.1
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 4.2.2
La valeur exacte de est .
Étape 4.2.3
Multipliez par .
Étape 4.2.4
La réponse finale est .
Étape 5
La droite tangente horizontale sur la fonction est .
Étape 6