Calcul infinitésimal Exemples

Trouver la tangente horizontale f(x)=x^3+1
Étape 1
Déterminez la dérivée.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4
Additionnez et .
Étape 2
Définissez la dérivée égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Divisez chaque terme dans par .
Étape 2.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.1
Annulez le facteur commun.
Étape 2.1.2.1.2
Divisez par .
Étape 2.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Divisez par .
Étape 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Réécrivez comme .
Étape 2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.3
Plus ou moins est .
Étape 3
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
L’élévation de à toute puissance positive produit .
Étape 3.2.2
Additionnez et .
Étape 3.2.3
La réponse finale est .
Étape 4
La droite tangente horizontale sur la fonction est .
Étape 5