Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Associez et .
Étape 1.2.4
Associez et .
Étape 1.2.5
Annulez le facteur commun de .
Étape 1.2.5.1
Annulez le facteur commun.
Étape 1.2.5.2
Divisez par .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Multipliez par .
Étape 1.4
Différenciez en utilisant la règle de la constante.
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Additionnez et .
Étape 2
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Réécrivez comme .
Étape 3.2.1.2
Élevez à la puissance .
Étape 3.2.1.3
Réécrivez comme .
Étape 3.2.1.3.1
Factorisez à partir de .
Étape 3.2.1.3.2
Réécrivez comme .
Étape 3.2.1.4
Extrayez les termes de sous le radical.
Étape 3.2.1.5
Annulez le facteur commun de .
Étape 3.2.1.5.1
Factorisez à partir de .
Étape 3.2.1.5.2
Annulez le facteur commun.
Étape 3.2.1.5.3
Réécrivez l’expression.
Étape 3.2.2
Soustrayez de .
Étape 3.2.3
La réponse finale est .
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Simplifiez chaque terme.
Étape 4.2.1.1
Appliquez la règle de produit à .
Étape 4.2.1.2
Élevez à la puissance .
Étape 4.2.1.3
Réécrivez comme .
Étape 4.2.1.4
Élevez à la puissance .
Étape 4.2.1.5
Réécrivez comme .
Étape 4.2.1.5.1
Factorisez à partir de .
Étape 4.2.1.5.2
Réécrivez comme .
Étape 4.2.1.6
Extrayez les termes de sous le radical.
Étape 4.2.1.7
Annulez le facteur commun de .
Étape 4.2.1.7.1
Factorisez à partir de .
Étape 4.2.1.7.2
Annulez le facteur commun.
Étape 4.2.1.7.3
Réécrivez l’expression.
Étape 4.2.1.8
Multipliez par .
Étape 4.2.2
Additionnez et .
Étape 4.2.3
La réponse finale est .
Étape 5
Les droites tangentes horizontales sur la fonction sont .
Étape 6