Calcul infinitésimal Exemples

Trouver les points critiques xe^(-2x^2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Élevez à la puissance .
Étape 1.1.5
Élevez à la puissance .
Étape 1.1.6
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.7
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1
Additionnez et .
Étape 1.1.7.2
Déplacez à gauche de .
Étape 1.1.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.9
Multipliez par .
Étape 1.1.10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.10.1
Remettez les termes dans l’ordre.
Étape 1.1.10.2
Remettez les facteurs dans l’ordre dans .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Multipliez par .
Étape 2.2.1.3
Factorisez à partir de .
Étape 2.2.2
Réécrivez comme .
Étape 2.2.3
Réécrivez comme .
Étape 2.2.4
Remettez dans l’ordre et .
Étape 2.2.5
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2.2.6
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.6.1
Multipliez par .
Étape 2.2.6.2
Supprimez les parenthèses inutiles.
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.4.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.4.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.5.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.2.1
Divisez chaque terme dans par .
Étape 2.5.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.2.2.1.1
Annulez le facteur commun.
Étape 2.5.2.2.2.1.2
Divisez par .
Étape 2.5.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.2.3.1
Placez le signe moins devant la fraction.
Étape 2.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.6.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.1
Divisez chaque terme dans par .
Étape 2.6.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.2.1.1
Annulez le facteur commun.
Étape 2.6.2.2.2.1.2
Divisez par .
Étape 2.6.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1
Appliquez la règle de produit à .
Étape 4.1.2.1.2
Appliquez la règle de produit à .
Étape 4.1.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
Élevez à la puissance .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.2.3
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.2.4
Élevez à la puissance .
Étape 4.1.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Factorisez à partir de .
Étape 4.1.2.3.2
Factorisez à partir de .
Étape 4.1.2.3.3
Annulez le facteur commun.
Étape 4.1.2.3.4
Réécrivez l’expression.
Étape 4.1.2.4
Réécrivez comme .
Étape 4.1.2.5
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.1.2.6
Multipliez par .
Étape 4.1.2.7
Déplacez à gauche de .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Appliquez la règle de produit à .
Étape 4.2.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 4.2.2.1.3
Élevez à la puissance .
Étape 4.2.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Factorisez à partir de .
Étape 4.2.2.2.2
Factorisez à partir de .
Étape 4.2.2.2.3
Annulez le facteur commun.
Étape 4.2.2.2.4
Réécrivez l’expression.
Étape 4.2.2.3
Réécrivez comme .
Étape 4.2.2.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.2.2.5
Associez.
Étape 4.2.2.6
Multipliez par .
Étape 4.3
Indiquez tous les points.
Étape 5