Calcul infinitésimal Exemples

Trouver les points critiques 6x^3+x^2+6x
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4.3
Multipliez par .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.2.4
Factorisez à partir de .
Étape 2.2.5
Factorisez à partir de .
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Divisez par .
Étape 2.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Soustrayez de .
Étape 2.6.1.4
Réécrivez comme .
Étape 2.6.1.5
Réécrivez comme .
Étape 2.6.1.6
Réécrivez comme .
Étape 2.6.2
Multipliez par .
Étape 2.7
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Soustrayez de .
Étape 2.7.1.4
Réécrivez comme .
Étape 2.7.1.5
Réécrivez comme .
Étape 2.7.1.6
Réécrivez comme .
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Remplacez le par .
Étape 2.7.4
Réécrivez comme .
Étape 2.7.5
Factorisez à partir de .
Étape 2.7.6
Factorisez à partir de .
Étape 2.7.7
Placez le signe moins devant la fraction.
Étape 2.8
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.8.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.2.1
Multipliez par .
Étape 2.8.1.2.2
Multipliez par .
Étape 2.8.1.3
Soustrayez de .
Étape 2.8.1.4
Réécrivez comme .
Étape 2.8.1.5
Réécrivez comme .
Étape 2.8.1.6
Réécrivez comme .
Étape 2.8.2
Multipliez par .
Étape 2.8.3
Remplacez le par .
Étape 2.8.4
Réécrivez comme .
Étape 2.8.5
Factorisez à partir de .
Étape 2.8.6
Factorisez à partir de .
Étape 2.8.7
Placez le signe moins devant la fraction.
Étape 2.9
La réponse finale est la combinaison des deux solutions.
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé