Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Utilisez pour réécrire comme .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.2.4
Associez et .
Étape 1.1.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.2.6
Simplifiez le numérateur.
Étape 1.1.2.6.1
Multipliez par .
Étape 1.1.2.6.2
Soustrayez de .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Utilisez pour réécrire comme .
Étape 1.1.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3.5
Associez et .
Étape 1.1.3.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.3.7
Simplifiez le numérateur.
Étape 1.1.3.7.1
Multipliez par .
Étape 1.1.3.7.2
Soustrayez de .
Étape 1.1.3.8
Placez le signe moins devant la fraction.
Étape 1.1.3.9
Associez et .
Étape 1.1.3.10
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.1.4
Associez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 2.2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.2.4
n’a pas de facteur hormis et .
est un nombre premier
Étape 2.2.5
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.2.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.2.8
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 2.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.3.1
Multipliez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Simplifiez chaque terme.
Étape 2.3.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.3.2.1.2
Annulez le facteur commun de .
Étape 2.3.2.1.2.1
Annulez le facteur commun.
Étape 2.3.2.1.2.2
Réécrivez l’expression.
Étape 2.3.2.1.3
Multipliez par en additionnant les exposants.
Étape 2.3.2.1.3.1
Déplacez .
Étape 2.3.2.1.3.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.2.1.3.3
Associez les numérateurs sur le dénominateur commun.
Étape 2.3.2.1.3.4
Additionnez et .
Étape 2.3.2.1.4
Annulez le facteur commun de .
Étape 2.3.2.1.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2.1.4.2
Annulez le facteur commun.
Étape 2.3.2.1.4.3
Réécrivez l’expression.
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Multipliez .
Étape 2.3.3.1.1
Multipliez par .
Étape 2.3.3.1.2
Multipliez par .
Étape 2.4
Résolvez l’équation.
Étape 2.4.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.2
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 2.4.3
Simplifiez le côté gauche.
Étape 2.4.3.1
Simplifiez .
Étape 2.4.3.1.1
Simplifiez l’expression.
Étape 2.4.3.1.1.1
Appliquez la règle de produit à .
Étape 2.4.3.1.1.2
Réécrivez comme .
Étape 2.4.3.1.1.3
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.4.3.1.2
Annulez le facteur commun de .
Étape 2.4.3.1.2.1
Annulez le facteur commun.
Étape 2.4.3.1.2.2
Réécrivez l’expression.
Étape 2.4.3.1.3
Simplifiez l’expression.
Étape 2.4.3.1.3.1
Élevez à la puissance .
Étape 2.4.3.1.3.2
Multipliez les exposants dans .
Étape 2.4.3.1.3.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.4.3.1.3.2.2
Annulez le facteur commun de .
Étape 2.4.3.1.3.2.2.1
Annulez le facteur commun.
Étape 2.4.3.1.3.2.2.2
Réécrivez l’expression.
Étape 2.4.3.1.3.2.3
Annulez le facteur commun de .
Étape 2.4.3.1.3.2.3.1
Annulez le facteur commun.
Étape 2.4.3.1.3.2.3.2
Réécrivez l’expression.
Étape 2.4.3.1.4
Simplifiez
Étape 2.4.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.4.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.4.4.2
Divisez chaque terme dans par et simplifiez.
Étape 2.4.4.2.1
Divisez chaque terme dans par .
Étape 2.4.4.2.2
Simplifiez le côté gauche.
Étape 2.4.4.2.2.1
Annulez le facteur commun de .
Étape 2.4.4.2.2.1.1
Annulez le facteur commun.
Étape 2.4.4.2.2.1.2
Divisez par .
Étape 2.4.4.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.4.4.4
Divisez chaque terme dans par et simplifiez.
Étape 2.4.4.4.1
Divisez chaque terme dans par .
Étape 2.4.4.4.2
Simplifiez le côté gauche.
Étape 2.4.4.4.2.1
Annulez le facteur commun de .
Étape 2.4.4.4.2.1.1
Annulez le facteur commun.
Étape 2.4.4.4.2.1.2
Divisez par .
Étape 2.4.4.4.3
Simplifiez le côté droit.
Étape 2.4.4.4.3.1
Placez le signe moins devant la fraction.
Étape 2.4.4.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Étape 3.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Étape 3.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 3.1.2
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 3.1.3
Toute valeur élevée à est la base elle-même.
Étape 3.1.4
Toute valeur élevée à est la base elle-même.
Étape 3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.3
Résolvez .
Étape 3.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 3.3.2
Simplifiez chaque côté de l’équation.
Étape 3.3.2.1
Utilisez pour réécrire comme .
Étape 3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.2.2.1
Simplifiez .
Étape 3.3.2.2.1.1
Appliquez la règle de produit à .
Étape 3.3.2.2.1.2
Élevez à la puissance .
Étape 3.3.2.2.1.3
Multipliez les exposants dans .
Étape 3.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.2.1.3.2
Annulez le facteur commun de .
Étape 3.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 3.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 3.3.2.2.1.4
Simplifiez
Étape 3.3.2.3
Simplifiez le côté droit.
Étape 3.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 3.3.3
Divisez chaque terme dans par et simplifiez.
Étape 3.3.3.1
Divisez chaque terme dans par .
Étape 3.3.3.2
Simplifiez le côté gauche.
Étape 3.3.3.2.1
Annulez le facteur commun de .
Étape 3.3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.3.2.1.2
Divisez par .
Étape 3.3.3.3
Simplifiez le côté droit.
Étape 3.3.3.3.1
Divisez par .
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Appliquez la règle de produit à .
Étape 4.1.2.1.2
Simplifiez le numérateur.
Étape 4.1.2.1.2.1
Multipliez les exposants dans .
Étape 4.1.2.1.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.1.2.1.2.1.2
Annulez le facteur commun de .
Étape 4.1.2.1.2.1.2.1
Factorisez à partir de .
Étape 4.1.2.1.2.1.2.2
Annulez le facteur commun.
Étape 4.1.2.1.2.1.2.3
Réécrivez l’expression.
Étape 4.1.2.1.2.1.3
Multipliez par .
Étape 4.1.2.1.2.2
Élevez à la puissance .
Étape 4.1.2.1.3
Élevez à la puissance .
Étape 4.1.2.1.4
Annulez le facteur commun à et .
Étape 4.1.2.1.4.1
Factorisez à partir de .
Étape 4.1.2.1.4.2
Annulez les facteurs communs.
Étape 4.1.2.1.4.2.1
Factorisez à partir de .
Étape 4.1.2.1.4.2.2
Annulez le facteur commun.
Étape 4.1.2.1.4.2.3
Réécrivez l’expression.
Étape 4.1.2.1.5
Réécrivez comme .
Étape 4.1.2.1.6
Toute racine de est .
Étape 4.1.2.1.7
Simplifiez le dénominateur.
Étape 4.1.2.1.7.1
Réécrivez comme .
Étape 4.1.2.1.7.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.1.2.1.8
Appliquez la règle de produit à .
Étape 4.1.2.1.9
Simplifiez le numérateur.
Étape 4.1.2.1.9.1
Multipliez les exposants dans .
Étape 4.1.2.1.9.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.1.2.1.9.1.2
Annulez le facteur commun de .
Étape 4.1.2.1.9.1.2.1
Annulez le facteur commun.
Étape 4.1.2.1.9.1.2.2
Réécrivez l’expression.
Étape 4.1.2.1.9.2
Élevez à la puissance .
Étape 4.1.2.1.10
Élevez à la puissance .
Étape 4.1.2.1.11
Annulez le facteur commun à et .
Étape 4.1.2.1.11.1
Factorisez à partir de .
Étape 4.1.2.1.11.2
Annulez les facteurs communs.
Étape 4.1.2.1.11.2.1
Factorisez à partir de .
Étape 4.1.2.1.11.2.2
Annulez le facteur commun.
Étape 4.1.2.1.11.2.3
Réécrivez l’expression.
Étape 4.1.2.1.12
Réécrivez comme .
Étape 4.1.2.1.13
Toute racine de est .
Étape 4.1.2.1.14
Simplifiez le dénominateur.
Étape 4.1.2.1.14.1
Réécrivez comme .
Étape 4.1.2.1.14.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.1.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.1.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par .
Étape 4.1.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.5
Soustrayez de .
Étape 4.1.2.6
Placez le signe moins devant la fraction.
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Appliquez la règle de produit à .
Étape 4.2.2.1.2
Élevez à la puissance .
Étape 4.2.2.1.3
Appliquez la règle de produit à .
Étape 4.2.2.1.4
Simplifiez le numérateur.
Étape 4.2.2.1.4.1
Multipliez les exposants dans .
Étape 4.2.2.1.4.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.1.4.1.2
Annulez le facteur commun de .
Étape 4.2.2.1.4.1.2.1
Factorisez à partir de .
Étape 4.2.2.1.4.1.2.2
Annulez le facteur commun.
Étape 4.2.2.1.4.1.2.3
Réécrivez l’expression.
Étape 4.2.2.1.4.1.3
Multipliez par .
Étape 4.2.2.1.4.2
Élevez à la puissance .
Étape 4.2.2.1.5
Élevez à la puissance .
Étape 4.2.2.1.6
Annulez le facteur commun à et .
Étape 4.2.2.1.6.1
Factorisez à partir de .
Étape 4.2.2.1.6.2
Annulez les facteurs communs.
Étape 4.2.2.1.6.2.1
Factorisez à partir de .
Étape 4.2.2.1.6.2.2
Annulez le facteur commun.
Étape 4.2.2.1.6.2.3
Réécrivez l’expression.
Étape 4.2.2.1.7
Multipliez par .
Étape 4.2.2.1.8
Réécrivez comme .
Étape 4.2.2.1.9
Toute racine de est .
Étape 4.2.2.1.10
Simplifiez le dénominateur.
Étape 4.2.2.1.10.1
Réécrivez comme .
Étape 4.2.2.1.10.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.2.2.1.11
Appliquez la règle de produit à .
Étape 4.2.2.1.12
Élevez à la puissance .
Étape 4.2.2.1.13
Appliquez la règle de produit à .
Étape 4.2.2.1.14
Simplifiez le numérateur.
Étape 4.2.2.1.14.1
Multipliez les exposants dans .
Étape 4.2.2.1.14.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.1.14.1.2
Annulez le facteur commun de .
Étape 4.2.2.1.14.1.2.1
Annulez le facteur commun.
Étape 4.2.2.1.14.1.2.2
Réécrivez l’expression.
Étape 4.2.2.1.14.2
Élevez à la puissance .
Étape 4.2.2.1.15
Élevez à la puissance .
Étape 4.2.2.1.16
Annulez le facteur commun à et .
Étape 4.2.2.1.16.1
Factorisez à partir de .
Étape 4.2.2.1.16.2
Annulez les facteurs communs.
Étape 4.2.2.1.16.2.1
Factorisez à partir de .
Étape 4.2.2.1.16.2.2
Annulez le facteur commun.
Étape 4.2.2.1.16.2.3
Réécrivez l’expression.
Étape 4.2.2.1.17
Multipliez par .
Étape 4.2.2.1.18
Réécrivez comme .
Étape 4.2.2.1.19
Toute racine de est .
Étape 4.2.2.1.20
Simplifiez le dénominateur.
Étape 4.2.2.1.20.1
Réécrivez comme .
Étape 4.2.2.1.20.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.2.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.2.2.3.1
Multipliez par .
Étape 4.2.2.3.2
Multipliez par .
Étape 4.2.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.2.5
Soustrayez de .
Étape 4.2.2.6
Placez le signe moins devant la fraction.
Étape 4.3
Évaluez sur .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Simplifiez
Étape 4.3.2.1
Simplifiez chaque terme.
Étape 4.3.2.1.1
L’élévation de à toute puissance positive produit .
Étape 4.3.2.1.2
Réécrivez comme .
Étape 4.3.2.1.3
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.3.2.1.4
L’élévation de à toute puissance positive produit .
Étape 4.3.2.1.5
Réécrivez comme .
Étape 4.3.2.1.6
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.3.2.1.7
Multipliez par .
Étape 4.3.2.2
Additionnez et .
Étape 4.4
Indiquez tous les points.
Étape 5