Calcul infinitésimal Exemples

Trouver les points critiques f(x)=(x^2+25)/x
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4
Additionnez et .
Étape 1.1.3
Élevez à la puissance .
Étape 1.1.4
Élevez à la puissance .
Étape 1.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6
Additionnez et .
Étape 1.1.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.8
Multipliez par .
Étape 1.1.9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.9.1
Appliquez la propriété distributive.
Étape 1.1.9.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.9.2.1
Multipliez par .
Étape 1.1.9.2.2
Soustrayez de .
Étape 1.1.9.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.9.3.1
Réécrivez comme .
Étape 1.1.9.3.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3.2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Définissez égal à .
Étape 2.3.2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Définissez égal à .
Étape 2.3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.2.2.3
Plus ou moins est .
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1
Élevez à la puissance .
Étape 4.1.2.1.2
Additionnez et .
Étape 4.1.2.2
Divisez par .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Élevez à la puissance .
Étape 4.2.2.1.2
Additionnez et .
Étape 4.2.2.2
Divisez par .
Étape 4.3
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Remplacez par .
Étape 4.3.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Étape 4.4
Indiquez tous les points.
Étape 5