Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Différenciez en utilisant la règle de la constante.
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 2.3
Factorisez le côté gauche de l’équation.
Étape 2.3.1
Factorisez à partir de .
Étape 2.3.1.1
Factorisez à partir de .
Étape 2.3.1.2
Factorisez à partir de .
Étape 2.3.1.3
Factorisez à partir de .
Étape 2.3.1.4
Factorisez à partir de .
Étape 2.3.1.5
Factorisez à partir de .
Étape 2.3.2
Factorisez.
Étape 2.3.2.1
Factorisez à l’aide de la méthode AC.
Étape 2.3.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.3.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.3.2.2
Supprimez les parenthèses inutiles.
Étape 2.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Ajoutez aux deux côtés de l’équation.
Étape 2.6
Définissez égal à et résolvez .
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Soustrayez des deux côtés de l’équation.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 2.8
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 2.9
Résolvez la première équation pour .
Étape 2.10
Résolvez l’équation pour .
Étape 2.10.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.10.2
Simplifiez .
Étape 2.10.2.1
Réécrivez comme .
Étape 2.10.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.10.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.10.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.10.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.10.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.11
Résolvez la deuxième équation pour .
Étape 2.12
Résolvez l’équation pour .
Étape 2.12.1
Supprimez les parenthèses.
Étape 2.12.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.12.3
Réécrivez comme .
Étape 2.12.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.12.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.12.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.12.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.13
La solution à est .
Étape 3
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Élevez à la puissance .
Étape 4.1.2.1.2
Élevez à la puissance .
Étape 4.1.2.1.3
Multipliez par .
Étape 4.1.2.1.4
Multipliez par .
Étape 4.1.2.2
Simplifiez en soustrayant des nombres.
Étape 4.1.2.2.1
Soustrayez de .
Étape 4.1.2.2.2
Soustrayez de .
Étape 4.1.2.2.3
Soustrayez de .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Élevez à la puissance .
Étape 4.2.2.1.2
Élevez à la puissance .
Étape 4.2.2.1.3
Multipliez par .
Étape 4.2.2.1.4
Multipliez par .
Étape 4.2.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.2.2.2.1
Additionnez et .
Étape 4.2.2.2.2
Additionnez et .
Étape 4.2.2.2.3
Soustrayez de .
Étape 4.3
Indiquez tous les points.
Étape 5