Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 2.2
Simplifiez le côté droit.
Étape 2.2.1
La valeur exacte de est .
Étape 2.3
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 2.4
Simplifiez .
Étape 2.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4.2
Associez les fractions.
Étape 2.4.2.1
Associez et .
Étape 2.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.4.3
Simplifiez le numérateur.
Étape 2.4.3.1
Multipliez par .
Étape 2.4.3.2
Soustrayez de .
Étape 2.5
Déterminez la période de .
Étape 2.5.1
La période de la fonction peut être calculée en utilisant .
Étape 2.5.2
Remplacez par dans la formule pour la période.
Étape 2.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.5.4
Divisez par .
Étape 2.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 2.7
Consolidez les réponses.
, pour tout entier
, pour tout entier
Étape 3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
, pour tout entier
Étape 4