Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Remplacez dans par .
Étape 1.2
Résolvez .
Étape 1.2.1
Supprimez les parenthèses.
Étape 1.2.2
Simplifiez .
Étape 1.2.2.1
Simplifiez le numérateur.
Étape 1.2.2.1.1
Multipliez par .
Étape 1.2.2.1.2
Soustrayez de .
Étape 1.2.2.2
Simplifiez le dénominateur.
Étape 1.2.2.2.1
Multipliez par .
Étape 1.2.2.2.2
Additionnez et .
Étape 2
Étape 2.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2.2
Différenciez.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.4
Multipliez par .
Étape 2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.6
Simplifiez l’expression.
Étape 2.2.6.1
Additionnez et .
Étape 2.2.6.2
Déplacez à gauche de .
Étape 2.2.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.9
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.10
Multipliez par .
Étape 2.2.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.12
Simplifiez l’expression.
Étape 2.2.12.1
Additionnez et .
Étape 2.2.12.2
Multipliez par .
Étape 2.3
Simplifiez
Étape 2.3.1
Appliquez la propriété distributive.
Étape 2.3.2
Appliquez la propriété distributive.
Étape 2.3.3
Simplifiez le numérateur.
Étape 2.3.3.1
Simplifiez chaque terme.
Étape 2.3.3.1.1
Multipliez par .
Étape 2.3.3.1.2
Multipliez par .
Étape 2.3.3.1.3
Multipliez par .
Étape 2.3.3.1.4
Multipliez par .
Étape 2.3.3.2
Associez les termes opposés dans .
Étape 2.3.3.2.1
Soustrayez de .
Étape 2.3.3.2.2
Additionnez et .
Étape 2.3.3.3
Additionnez et .
Étape 2.4
Évaluez la dérivée sur .
Étape 2.5
Simplifiez le dénominateur.
Étape 2.5.1
Multipliez par .
Étape 2.5.2
Additionnez et .
Étape 2.5.3
Élevez à la puissance .
Étape 3
Étape 3.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 3.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 3.3
Résolvez .
Étape 3.3.1
Simplifiez .
Étape 3.3.1.1
Réécrivez.
Étape 3.3.1.2
Simplifiez en ajoutant des zéros.
Étape 3.3.1.3
Appliquez la propriété distributive.
Étape 3.3.1.4
Associez et .
Étape 3.3.1.5
Annulez le facteur commun de .
Étape 3.3.1.5.1
Factorisez à partir de .
Étape 3.3.1.5.2
Factorisez à partir de .
Étape 3.3.1.5.3
Annulez le facteur commun.
Étape 3.3.1.5.4
Réécrivez l’expression.
Étape 3.3.1.6
Associez et .
Étape 3.3.1.7
Simplifiez l’expression.
Étape 3.3.1.7.1
Multipliez par .
Étape 3.3.1.7.2
Placez le signe moins devant la fraction.
Étape 3.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.3.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 3.3.2.3.1
Multipliez par .
Étape 3.3.2.3.2
Multipliez par .
Étape 3.3.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.2.5
Simplifiez le numérateur.
Étape 3.3.2.5.1
Multipliez par .
Étape 3.3.2.5.2
Additionnez et .
Étape 3.3.3
Remettez les termes dans l’ordre.
Étape 4