Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Utilisez pour réécrire comme .
Étape 1.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.2.5
Associez et .
Étape 1.1.2.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.2.7
Simplifiez le numérateur.
Étape 1.1.2.7.1
Multipliez par .
Étape 1.1.2.7.2
Soustrayez de .
Étape 1.1.2.8
Placez le signe moins devant la fraction.
Étape 1.1.2.9
Associez et .
Étape 1.1.2.10
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.3.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.4.1
Multipliez chaque terme dans par .
Étape 2.4.2
Simplifiez le côté gauche.
Étape 2.4.2.1
Annulez le facteur commun de .
Étape 2.4.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.4.2.1.2
Annulez le facteur commun.
Étape 2.4.2.1.3
Réécrivez l’expression.
Étape 2.4.3
Simplifiez le côté droit.
Étape 2.4.3.1
Multipliez par .
Étape 2.5
Résolvez l’équation.
Étape 2.5.1
Réécrivez l’équation comme .
Étape 2.5.2
Divisez chaque terme dans par et simplifiez.
Étape 2.5.2.1
Divisez chaque terme dans par .
Étape 2.5.2.2
Simplifiez le côté gauche.
Étape 2.5.2.2.1
Annulez le facteur commun.
Étape 2.5.2.2.2
Divisez par .
Étape 2.5.2.3
Simplifiez le côté droit.
Étape 2.5.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.5.3
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 2.5.4
Simplifiez l’exposant.
Étape 2.5.4.1
Simplifiez le côté gauche.
Étape 2.5.4.1.1
Simplifiez .
Étape 2.5.4.1.1.1
Multipliez les exposants dans .
Étape 2.5.4.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.5.4.1.1.1.2
Annulez le facteur commun de .
Étape 2.5.4.1.1.1.2.1
Annulez le facteur commun.
Étape 2.5.4.1.1.1.2.2
Réécrivez l’expression.
Étape 2.5.4.1.1.1.3
Annulez le facteur commun de .
Étape 2.5.4.1.1.1.3.1
Annulez le facteur commun.
Étape 2.5.4.1.1.1.3.2
Réécrivez l’expression.
Étape 2.5.4.1.1.2
Simplifiez
Étape 2.5.4.2
Simplifiez le côté droit.
Étape 2.5.4.2.1
Simplifiez .
Étape 2.5.4.2.1.1
Appliquez la règle de produit à .
Étape 2.5.4.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 2.5.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.5.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.5.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Étape 3.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.3
Résolvez .
Étape 3.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 3.3.2
Simplifiez chaque côté de l’équation.
Étape 3.3.2.1
Utilisez pour réécrire comme .
Étape 3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.2.2.1
Simplifiez .
Étape 3.3.2.2.1.1
Appliquez la règle de produit à .
Étape 3.3.2.2.1.2
Élevez à la puissance .
Étape 3.3.2.2.1.3
Multipliez les exposants dans .
Étape 3.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.2.1.3.2
Annulez le facteur commun de .
Étape 3.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 3.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 3.3.2.3
Simplifiez le côté droit.
Étape 3.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 3.3.3
Résolvez .
Étape 3.3.3.1
Divisez chaque terme dans par et simplifiez.
Étape 3.3.3.1.1
Divisez chaque terme dans par .
Étape 3.3.3.1.2
Simplifiez le côté gauche.
Étape 3.3.3.1.2.1
Annulez le facteur commun de .
Étape 3.3.3.1.2.1.1
Annulez le facteur commun.
Étape 3.3.3.1.2.1.2
Divisez par .
Étape 3.3.3.1.3
Simplifiez le côté droit.
Étape 3.3.3.1.3.1
Divisez par .
Étape 3.3.3.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.3.3.3
Simplifiez .
Étape 3.3.3.3.1
Réécrivez comme .
Étape 3.3.3.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.3.3.3.3
Plus ou moins est .
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Réécrivez comme .
Étape 4.1.2.1.2
Réécrivez comme .
Étape 4.1.2.1.3
Réécrivez comme .
Étape 4.1.2.1.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.1.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.1.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.1.2.3.1
Multipliez par .
Étape 4.1.2.3.2
Multipliez par en additionnant les exposants.
Étape 4.1.2.3.2.1
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.2.3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.3.2.3
Additionnez et .
Étape 4.1.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.5
Simplifiez le numérateur.
Étape 4.1.2.5.1
Divisez par .
Étape 4.1.2.5.2
Élevez à la puissance .
Étape 4.1.2.5.3
Multipliez par .
Étape 4.1.2.5.4
Soustrayez de .
Étape 4.1.2.6
Placez le signe moins devant la fraction.
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Réécrivez comme .
Étape 4.2.2.1.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.2.2.1.3
Multipliez .
Étape 4.2.2.1.3.1
Multipliez par .
Étape 4.2.2.1.3.2
Multipliez par .
Étape 4.2.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.2.2.3.1
Multipliez par .
Étape 4.2.2.3.2
Multipliez par en additionnant les exposants.
Étape 4.2.2.3.2.1
Utilisez la règle de puissance pour associer des exposants.
Étape 4.2.2.3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.2.3.2.3
Additionnez et .
Étape 4.2.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.2.5
Simplifiez le numérateur.
Étape 4.2.2.5.1
Divisez par .
Étape 4.2.2.5.2
Élevez à la puissance .
Étape 4.2.2.5.3
Additionnez et .
Étape 4.3
Évaluez sur .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Simplifiez
Étape 4.3.2.1
Simplifiez chaque terme.
Étape 4.3.2.1.1
Réécrivez comme .
Étape 4.3.2.1.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.3.2.1.3
Multipliez par .
Étape 4.3.2.2
Additionnez et .
Étape 4.4
Indiquez tous les points.
Étape 5