Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.2
Résolvez .
Étape 1.2.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 1.2.3
Simplifiez .
Étape 1.2.3.1
Réécrivez comme .
Étape 1.2.3.2
Réécrivez comme .
Étape 1.2.3.3
Réécrivez comme .
Étape 1.2.3.4
Réécrivez comme .
Étape 1.2.3.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.2.3.6
Déplacez à gauche de .
Étape 1.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.3
Définissez l’argument dans égal à pour déterminer où l’expression est indéfinie.
, pour tout entier
Étape 1.4
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation de constructeur d’ensemble :
, pour tout entier
Notation de constructeur d’ensemble :
, pour tout entier
Étape 2
Comme le domaine n’est pas l’ensemble des nombres réels, n’est pas continu sur l’ensemble des nombres réels.
Pas continu
Étape 3