Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3.3
Remplacez toutes les occurrences de par .
Étape 1.4
Différenciez.
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4.3
Simplifiez l’expression.
Étape 1.4.3.1
Multipliez par .
Étape 1.4.3.2
Déplacez à gauche de .
Étape 1.4.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4.5
Multipliez par .
Étape 1.5
Simplifiez
Étape 1.5.1
Appliquez la propriété distributive.
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Remettez les termes dans l’ordre.
Étape 1.5.4
Remettez les facteurs dans l’ordre dans .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.2.3.3
Remplacez toutes les occurrences de par .
Étape 2.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.7
Multipliez par .
Étape 2.2.8
Déplacez à gauche de .
Étape 2.2.9
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.3.2.3
Remplacez toutes les occurrences de par .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.5
Multipliez par .
Étape 2.3.6
Déplacez à gauche de .
Étape 2.3.7
Multipliez par .
Étape 2.4
Simplifiez
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Associez des termes.
Étape 2.4.2.1
Multipliez par .
Étape 2.4.2.2
Soustrayez de .
Étape 2.4.3
Remettez les termes dans l’ordre.
Étape 2.4.4
Remettez les facteurs dans l’ordre dans .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 4.1.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 4.1.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.1.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 4.1.3.3
Remplacez toutes les occurrences de par .
Étape 4.1.4
Différenciez.
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4.3
Simplifiez l’expression.
Étape 4.1.4.3.1
Multipliez par .
Étape 4.1.4.3.2
Déplacez à gauche de .
Étape 4.1.4.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4.5
Multipliez par .
Étape 4.1.5
Simplifiez
Étape 4.1.5.1
Appliquez la propriété distributive.
Étape 4.1.5.2
Multipliez par .
Étape 4.1.5.3
Remettez les termes dans l’ordre.
Étape 4.1.5.4
Remettez les facteurs dans l’ordre dans .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Factorisez à partir de .
Étape 5.2.1
Factorisez à partir de .
Étape 5.2.2
Factorisez à partir de .
Étape 5.2.3
Factorisez à partir de .
Étape 5.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5.4
Définissez égal à et résolvez .
Étape 5.4.1
Définissez égal à .
Étape 5.4.2
Résolvez pour .
Étape 5.4.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 5.4.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 5.4.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 5.5
Définissez égal à et résolvez .
Étape 5.5.1
Définissez égal à .
Étape 5.5.2
Résolvez pour .
Étape 5.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 5.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 5.5.2.2.1
Divisez chaque terme dans par .
Étape 5.5.2.2.2
Simplifiez le côté gauche.
Étape 5.5.2.2.2.1
Annulez le facteur commun de .
Étape 5.5.2.2.2.1.1
Annulez le facteur commun.
Étape 5.5.2.2.2.1.2
Divisez par .
Étape 5.5.2.2.3
Simplifiez le côté droit.
Étape 5.5.2.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Simplifiez chaque terme.
Étape 9.1.1
Annulez le facteur commun de .
Étape 9.1.1.1
Factorisez à partir de .
Étape 9.1.1.2
Annulez le facteur commun.
Étape 9.1.1.3
Réécrivez l’expression.
Étape 9.1.2
Annulez le facteur commun de .
Étape 9.1.2.1
Factorisez à partir de .
Étape 9.1.2.2
Annulez le facteur commun.
Étape 9.1.2.3
Réécrivez l’expression.
Étape 9.1.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 9.1.4
Associez et .
Étape 9.1.5
Annulez le facteur commun de .
Étape 9.1.5.1
Factorisez à partir de .
Étape 9.1.5.2
Annulez le facteur commun.
Étape 9.1.5.3
Réécrivez l’expression.
Étape 9.1.6
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 9.1.7
Associez et .
Étape 9.1.8
Placez le signe moins devant la fraction.
Étape 9.2
Associez les fractions.
Étape 9.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 9.2.2
Simplifiez l’expression.
Étape 9.2.2.1
Soustrayez de .
Étape 9.2.2.2
Placez le signe moins devant la fraction.
Étape 10
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 11
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Étape 11.2.1
Associez et .
Étape 11.2.2
Annulez le facteur commun de .
Étape 11.2.2.1
Factorisez à partir de .
Étape 11.2.2.2
Annulez le facteur commun.
Étape 11.2.2.3
Réécrivez l’expression.
Étape 11.2.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 11.2.4
Multipliez par .
Étape 11.2.5
La réponse finale est .
Étape 12
Ce sont les extrema locaux pour .
est un maximum local
Étape 13