Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux y=cos(x)+x/2
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 2.4
Remettez les termes dans l’ordre.
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.3
Soustrayez de .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Soustrayez des deux côtés de l’équation.
Étape 6
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Divisez chaque terme dans par .
Étape 6.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.2.2
Divisez par .
Étape 6.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.3.2
Divisez par .
Étape 7
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 8
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
La valeur exacte de est .
Étape 9
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 10
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 10.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Associez et .
Étape 10.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 10.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.1
Déplacez à gauche de .
Étape 10.3.2
Soustrayez de .
Étape 11
La solution de l’équation est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
La valeur exacte de est .
Étape 14
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 15
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1.1
La valeur exacte de est .
Étape 15.2.1.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 15.2.1.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1.3.1
Multipliez par .
Étape 15.2.1.3.2
Multipliez par .
Étape 15.2.2
La réponse finale est .
Étape 16
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 17
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 17.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 17.2
La valeur exacte de est .
Étape 17.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 17.3.1
Multipliez par .
Étape 17.3.2
Multipliez par .
Étape 18
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 19
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 19.1
Remplacez la variable par dans l’expression.
Étape 19.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 19.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 19.2.1.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 19.2.1.2
La valeur exacte de est .
Étape 19.2.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 19.2.1.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 19.2.1.4.1
Multipliez par .
Étape 19.2.1.4.2
Multipliez par .
Étape 19.2.2
La réponse finale est .
Étape 20
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 21