Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux y=x^2e^x
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Remettez les termes dans l’ordre.
Étape 2.4.2
Remettez les facteurs dans l’ordre dans .
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.3.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.5
Multipliez par .
Étape 3.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Appliquez la propriété distributive.
Étape 3.4.2
Additionnez et .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Déplacez .
Étape 3.4.2.2
Additionnez et .
Étape 3.4.3
Remettez les termes dans l’ordre.
Étape 3.4.4
Remettez les facteurs dans l’ordre dans .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 5.1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1.4.1
Remettez les termes dans l’ordre.
Étape 5.1.4.2
Remettez les facteurs dans l’ordre dans .
Étape 5.2
La dérivée première de par rapport à est .
Étape 6
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez la dérivée première égale à .
Étape 6.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Factorisez à partir de .
Étape 6.2.3
Factorisez à partir de .
Étape 6.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6.4
Définissez égal à .
Étape 6.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Définissez égal à .
Étape 6.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 6.5.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 6.5.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 6.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.6.1
Définissez égal à .
Étape 6.6.2
Soustrayez des deux côtés de l’équation.
Étape 6.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 8
Points critiques à évaluer.
Étape 9
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 10
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
L’élévation de à toute puissance positive produit .
Étape 10.1.2
Tout ce qui est élevé à la puissance est .
Étape 10.1.3
Multipliez par .
Étape 10.1.4
Multipliez par .
Étape 10.1.5
Tout ce qui est élevé à la puissance est .
Étape 10.1.6
Multipliez par .
Étape 10.1.7
Tout ce qui est élevé à la puissance est .
Étape 10.1.8
Multipliez par .
Étape 10.2
Simplifiez en ajoutant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Additionnez et .
Étape 10.2.2
Additionnez et .
Étape 11
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 12
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Remplacez la variable par dans l’expression.
Étape 12.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
L’élévation de à toute puissance positive produit .
Étape 12.2.2
Tout ce qui est élevé à la puissance est .
Étape 12.2.3
Multipliez par .
Étape 12.2.4
La réponse finale est .
Étape 13
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 14
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 14.1.1
Élevez à la puissance .
Étape 14.1.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 14.1.3
Associez et .
Étape 14.1.4
Multipliez par .
Étape 14.1.5
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 14.1.6
Associez et .
Étape 14.1.7
Placez le signe moins devant la fraction.
Étape 14.1.8
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 14.1.9
Associez et .
Étape 14.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 14.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 14.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 14.2.2.1
Soustrayez de .
Étape 14.2.2.2
Additionnez et .
Étape 14.2.2.3
Placez le signe moins devant la fraction.
Étape 15
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 16
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 16.1
Remplacez la variable par dans l’expression.
Étape 16.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1
Élevez à la puissance .
Étape 16.2.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 16.2.3
Associez et .
Étape 16.2.4
La réponse finale est .
Étape 17
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 18