Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux x+ racine carrée de 1-x
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Utilisez pour réécrire comme .
Étape 2.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2.3
Remplacez toutes les occurrences de par .
Étape 2.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.7
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2.8
Associez et .
Étape 2.2.9
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.10
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.10.1
Multipliez par .
Étape 2.2.10.2
Soustrayez de .
Étape 2.2.11
Placez le signe moins devant la fraction.
Étape 2.2.12
Multipliez par .
Étape 2.2.13
Soustrayez de .
Étape 2.2.14
Associez et .
Étape 2.2.15
Associez et .
Étape 2.2.16
Déplacez à gauche de .
Étape 2.2.17
Réécrivez comme .
Étape 2.2.18
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2.2.19
Placez le signe moins devant la fraction.
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3.3
Remplacez toutes les occurrences de par .
Étape 3.2.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.4.3
Remplacez toutes les occurrences de par .
Étape 3.2.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.9
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.9.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.9.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.9.2.1
Factorisez à partir de .
Étape 3.2.9.2.2
Annulez le facteur commun.
Étape 3.2.9.2.3
Réécrivez l’expression.
Étape 3.2.10
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.11
Associez et .
Étape 3.2.12
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.13
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.13.1
Multipliez par .
Étape 3.2.13.2
Soustrayez de .
Étape 3.2.14
Placez le signe moins devant la fraction.
Étape 3.2.15
Multipliez par .
Étape 3.2.16
Soustrayez de .
Étape 3.2.17
Associez et .
Étape 3.2.18
Associez et .
Étape 3.2.19
Déplacez à gauche de .
Étape 3.2.20
Réécrivez comme .
Étape 3.2.21
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.2.22
Placez le signe moins devant la fraction.
Étape 3.2.23
Multipliez par .
Étape 3.2.24
Multipliez par .
Étape 3.2.25
Associez et .
Étape 3.2.26
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.2.27
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.27.1
Déplacez .
Étape 3.2.27.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.27.2.1
Élevez à la puissance .
Étape 3.2.27.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.27.3
Écrivez comme une fraction avec un dénominateur commun.
Étape 3.2.27.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.27.5
Additionnez et .
Étape 3.2.28
Multipliez par .
Étape 3.2.29
Multipliez par .
Étape 3.3
Soustrayez de .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Utilisez pour réécrire comme .
Étape 5.1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 5.1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.2.3
Remplacez toutes les occurrences de par .
Étape 5.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.7
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.1.2.8
Associez et .
Étape 5.1.2.9
Associez les numérateurs sur le dénominateur commun.
Étape 5.1.2.10
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.10.1
Multipliez par .
Étape 5.1.2.10.2
Soustrayez de .
Étape 5.1.2.11
Placez le signe moins devant la fraction.
Étape 5.1.2.12
Multipliez par .
Étape 5.1.2.13
Soustrayez de .
Étape 5.1.2.14
Associez et .
Étape 5.1.2.15
Associez et .
Étape 5.1.2.16
Déplacez à gauche de .
Étape 5.1.2.17
Réécrivez comme .
Étape 5.1.2.18
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 5.1.2.19
Placez le signe moins devant la fraction.
Étape 5.2
La dérivée première de par rapport à est .
Étape 6
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez la dérivée première égale à .
Étape 6.2
Soustrayez des deux côtés de l’équation.
Étape 6.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 6.3.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 6.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Multipliez chaque terme dans par .
Étape 6.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 6.4.2.1.2
Annulez le facteur commun.
Étape 6.4.2.1.3
Réécrivez l’expression.
Étape 6.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.3.1
Multipliez par .
Étape 6.5
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Réécrivez l’équation comme .
Étape 6.5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Divisez chaque terme dans par .
Étape 6.5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.2.1
Annulez le facteur commun.
Étape 6.5.2.2.2
Divisez par .
Étape 6.5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.5.3
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 6.5.4
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.4.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.4.1.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.4.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.5.4.1.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.4.1.1.1.2.1
Annulez le facteur commun.
Étape 6.5.4.1.1.1.2.2
Réécrivez l’expression.
Étape 6.5.4.1.1.2
Simplifiez
Étape 6.5.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.4.2.1.1
Appliquez la règle de produit à .
Étape 6.5.4.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 6.5.4.2.1.3
Élevez à la puissance .
Étape 6.5.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.5.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.5.1.1
Soustrayez des deux côtés de l’équation.
Étape 6.5.5.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.5.5.1.3
Associez et .
Étape 6.5.5.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 6.5.5.1.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.5.1.5.1
Multipliez par .
Étape 6.5.5.1.5.2
Soustrayez de .
Étape 6.5.5.1.6
Placez le signe moins devant la fraction.
Étape 6.5.5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.5.2.1
Divisez chaque terme dans par .
Étape 6.5.5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.5.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.5.5.2.2.2
Divisez par .
Étape 6.5.5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.5.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.5.5.2.3.2
Divisez par .
Étape 7
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 7.1.2
Toute valeur élevée à est la base elle-même.
Étape 7.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 7.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 7.3.2
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.1
Utilisez pour réécrire comme .
Étape 7.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.2.1.1
Appliquez la règle de produit à .
Étape 7.3.2.2.1.2
Élevez à la puissance .
Étape 7.3.2.2.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 7.3.2.2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 7.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 7.3.2.2.1.4
Simplifiez
Étape 7.3.2.2.1.5
Appliquez la propriété distributive.
Étape 7.3.2.2.1.6
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.2.1.6.1
Multipliez par .
Étape 7.3.2.2.1.6.2
Multipliez par .
Étape 7.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 7.3.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.3.1
Soustrayez des deux côtés de l’équation.
Étape 7.3.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.3.2.1
Divisez chaque terme dans par .
Étape 7.3.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.3.2.2.1.1
Annulez le facteur commun.
Étape 7.3.3.2.2.1.2
Divisez par .
Étape 7.3.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.3.2.3.1
Divisez par .
Étape 7.4
Définissez le radicande dans inférieur à pour déterminer où l’expression est indéfinie.
Étape 7.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1
Soustrayez des deux côtés de l’inégalité.
Étape 7.5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.5.2.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 7.5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.5.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 7.5.2.2.2
Divisez par .
Étape 7.5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.5.2.3.1
Divisez par .
Étape 7.6
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 8
Points critiques à évaluer.
Étape 9
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 10
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 10.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 10.1.3
Soustrayez de .
Étape 10.1.4
Appliquez la règle de produit à .
Étape 10.1.5
Un à n’importe quelle puissance est égal à un.
Étape 10.1.6
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.6.1
Réécrivez comme .
Étape 10.1.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 10.1.6.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.6.3.1
Annulez le facteur commun.
Étape 10.1.6.3.2
Réécrivez l’expression.
Étape 10.1.6.4
Élevez à la puissance .
Étape 10.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Associez et .
Étape 10.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Factorisez à partir de .
Étape 10.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.2.1
Factorisez à partir de .
Étape 10.2.2.2.2
Annulez le facteur commun.
Étape 10.2.2.2.3
Réécrivez l’expression.
Étape 10.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 10.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 10.4.1
Multipliez par .
Étape 10.4.2
Multipliez par .
Étape 11
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 12
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Remplacez la variable par dans l’expression.
Étape 12.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 12.2.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 12.2.1.3
Soustrayez de .
Étape 12.2.1.4
Réécrivez comme .
Étape 12.2.1.5
Toute racine de est .
Étape 12.2.1.6
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.6.1
Réécrivez comme .
Étape 12.2.1.6.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 12.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 12.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 12.2.3.1
Multipliez par .
Étape 12.2.3.2
Multipliez par .
Étape 12.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 12.2.5
Additionnez et .
Étape 12.2.6
La réponse finale est .
Étape 13
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 14
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 14.1.1
Multipliez par .
Étape 14.1.2
Soustrayez de .
Étape 14.1.3
Réécrivez comme .
Étape 14.1.4
Appliquez la règle de puissance et multipliez les exposants, .
Étape 14.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 14.2.1
Annulez le facteur commun.
Étape 14.2.2
Réécrivez l’expression.
Étape 14.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 14.3.1
L’élévation de à toute puissance positive produit .
Étape 14.3.2
Multipliez par .
Étape 14.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 14.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Étape 15
Comme le test de la dérivée première a échoué, il n’y a aucun extremum local.
Aucun extremum local
Étape 16