Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux y=e^(2x)-e^x
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.4
Multipliez par .
Étape 2.2.5
Déplacez à gauche de .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.2.2.3
Remplacez toutes les occurrences de par .
Étape 3.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.5
Multipliez par .
Étape 3.2.6
Déplacez à gauche de .
Étape 3.2.7
Multipliez par .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 5.1.2.1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 5.1.2.1.3
Remplacez toutes les occurrences de par .
Étape 5.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.4
Multipliez par .
Étape 5.1.2.5
Déplacez à gauche de .
Étape 5.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 5.2
La dérivée première de par rapport à est .
Étape 6
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez la dérivée première égale à .
Étape 6.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Réécrivez comme .
Étape 6.2.2
Laissez . Remplacez toutes les occurrences de par .
Étape 6.2.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Factorisez à partir de .
Étape 6.2.3.2
Factorisez à partir de .
Étape 6.2.3.3
Factorisez à partir de .
Étape 6.2.4
Remplacez toutes les occurrences de par .
Étape 6.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Définissez égal à .
Étape 6.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 6.4.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 6.4.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 6.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Définissez égal à .
Étape 6.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.5.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.2.1
Divisez chaque terme dans par .
Étape 6.5.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.2.2.1.1
Annulez le facteur commun.
Étape 6.5.2.2.2.1.2
Divisez par .
Étape 6.5.2.3
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 6.5.2.4
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.4.1
Développez en déplaçant hors du logarithme.
Étape 6.5.2.4.2
Le logarithme naturel de est .
Étape 6.5.2.4.3
Multipliez par .
Étape 6.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 8
Points critiques à évaluer.
Étape 9
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 10
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Simplifiez en déplaçant dans le logarithme.
Étape 10.1.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 10.1.3
Appliquez la règle de produit à .
Étape 10.1.4
Un à n’importe quelle puissance est égal à un.
Étape 10.1.5
Élevez à la puissance .
Étape 10.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.6.1
Annulez le facteur commun.
Étape 10.1.6.2
Réécrivez l’expression.
Étape 10.1.7
L’élévation à une puissance et log sont des fonctions inverses.
Étape 10.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 10.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 10.2.3
Soustrayez de .
Étape 11
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 12
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Remplacez la variable par dans l’expression.
Étape 12.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.1
Simplifiez en déplaçant dans le logarithme.
Étape 12.2.1.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 12.2.1.3
Appliquez la règle de produit à .
Étape 12.2.1.4
Un à n’importe quelle puissance est égal à un.
Étape 12.2.1.5
Élevez à la puissance .
Étape 12.2.1.6
L’élévation à une puissance et log sont des fonctions inverses.
Étape 12.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 12.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 12.2.3.1
Multipliez par .
Étape 12.2.3.2
Multipliez par .
Étape 12.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 12.2.5
Soustrayez de .
Étape 12.2.6
Placez le signe moins devant la fraction.
Étape 12.2.7
La réponse finale est .
Étape 13
Ce sont les extrema locaux pour .
est un minimum local
Étape 14