Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.5
Multipliez par .
Étape 2.6
Déplacez à gauche de .
Étape 2.7
Multipliez par .
Étape 3
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3
Multipliez par .
Étape 4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5
Étape 5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 5.2
Associez des termes.
Étape 5.2.1
Associez et .
Étape 5.2.2
Additionnez et .