Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux f(x)=10/3x^3*51/2*x^2+5x+16
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Associez et .
Étape 1.2.2
Multipliez par .
Étape 1.2.3
Multipliez par .
Étape 1.2.4
Multipliez par .
Étape 1.2.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.1
Factorisez à partir de .
Étape 1.2.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.2.1
Factorisez à partir de .
Étape 1.2.5.2.2
Annulez le facteur commun.
Étape 1.2.5.2.3
Réécrivez l’expression.
Étape 1.2.5.2.4
Divisez par .
Étape 1.2.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.1
Déplacez .
Étape 1.2.6.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.6.3
Additionnez et .
Étape 1.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.9
Multipliez par .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.3
Multipliez par .
Étape 1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Additionnez et .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Additionnez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Associez et .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.2.3
Multipliez par .
Étape 4.1.2.4
Multipliez par .
Étape 4.1.2.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.5.1
Factorisez à partir de .
Étape 4.1.2.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.5.2.1
Factorisez à partir de .
Étape 4.1.2.5.2.2
Annulez le facteur commun.
Étape 4.1.2.5.2.3
Réécrivez l’expression.
Étape 4.1.2.5.2.4
Divisez par .
Étape 4.1.2.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.6.1
Déplacez .
Étape 4.1.2.6.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.2.6.3
Additionnez et .
Étape 4.1.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.2.9
Multipliez par .
Étape 4.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Additionnez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2
Divisez par .
Étape 5.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1.1
Factorisez à partir de .
Étape 5.3.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1.2.1
Factorisez à partir de .
Étape 5.3.3.1.2.2
Annulez le facteur commun.
Étape 5.3.3.1.2.3
Réécrivez l’expression.
Étape 5.3.3.2
Placez le signe moins devant la fraction.
Étape 5.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Réécrivez comme .
Étape 9.2
Appliquez la règle de produit à .
Étape 9.3
Élevez à la puissance .
Étape 9.4
Appliquez la règle de produit à .
Étape 9.5
Un à n’importe quelle puissance est égal à un.
Étape 9.6
Élevez à la puissance .
Étape 10
Comme il y a au moins un point avec ou une dérivée seconde indéfinie, appliquez le test de la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 10.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Remplacez la variable par dans l’expression.
Étape 10.2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1.1
L’élévation de à toute puissance positive produit .
Étape 10.2.2.1.2
Multipliez par .
Étape 10.2.2.2
Additionnez et .
Étape 10.2.2.3
La réponse finale est .
Étape 10.3
Aucun maximum ni minimum local déterminé pour .
Aucun maximum ni minimum local
Aucun maximum ni minimum local
Étape 11