Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Associez et .
Étape 1.2.2
Multipliez par .
Étape 1.2.3
Multipliez par .
Étape 1.2.4
Multipliez par .
Étape 1.2.5
Annulez le facteur commun à et .
Étape 1.2.5.1
Factorisez à partir de .
Étape 1.2.5.2
Annulez les facteurs communs.
Étape 1.2.5.2.1
Factorisez à partir de .
Étape 1.2.5.2.2
Annulez le facteur commun.
Étape 1.2.5.2.3
Réécrivez l’expression.
Étape 1.2.5.2.4
Divisez par .
Étape 1.2.6
Multipliez par en additionnant les exposants.
Étape 1.2.6.1
Déplacez .
Étape 1.2.6.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.6.3
Additionnez et .
Étape 1.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.9
Multipliez par .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Multipliez par .
Étape 1.4
Différenciez en utilisant la règle de la constante.
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Additionnez et .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Différenciez en utilisant la règle de la constante.
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Additionnez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2
Évaluez .
Étape 4.1.2.1
Associez et .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.2.3
Multipliez par .
Étape 4.1.2.4
Multipliez par .
Étape 4.1.2.5
Annulez le facteur commun à et .
Étape 4.1.2.5.1
Factorisez à partir de .
Étape 4.1.2.5.2
Annulez les facteurs communs.
Étape 4.1.2.5.2.1
Factorisez à partir de .
Étape 4.1.2.5.2.2
Annulez le facteur commun.
Étape 4.1.2.5.2.3
Réécrivez l’expression.
Étape 4.1.2.5.2.4
Divisez par .
Étape 4.1.2.6
Multipliez par en additionnant les exposants.
Étape 4.1.2.6.1
Déplacez .
Étape 4.1.2.6.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.2.6.3
Additionnez et .
Étape 4.1.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.2.9
Multipliez par .
Étape 4.1.3
Évaluez .
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Différenciez en utilisant la règle de la constante.
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Additionnez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Divisez chaque terme dans par et simplifiez.
Étape 5.3.1
Divisez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Étape 5.3.2.1
Annulez le facteur commun de .
Étape 5.3.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2
Divisez par .
Étape 5.3.3
Simplifiez le côté droit.
Étape 5.3.3.1
Annulez le facteur commun à et .
Étape 5.3.3.1.1
Factorisez à partir de .
Étape 5.3.3.1.2
Annulez les facteurs communs.
Étape 5.3.3.1.2.1
Factorisez à partir de .
Étape 5.3.3.1.2.2
Annulez le facteur commun.
Étape 5.3.3.1.2.3
Réécrivez l’expression.
Étape 5.3.3.2
Placez le signe moins devant la fraction.
Étape 5.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Réécrivez comme .
Étape 9.2
Appliquez la règle de produit à .
Étape 9.3
Élevez à la puissance .
Étape 9.4
Appliquez la règle de produit à .
Étape 9.5
Un à n’importe quelle puissance est égal à un.
Étape 9.6
Élevez à la puissance .
Étape 10
Étape 10.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 10.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 10.2.1
Remplacez la variable par dans l’expression.
Étape 10.2.2
Simplifiez le résultat.
Étape 10.2.2.1
Simplifiez chaque terme.
Étape 10.2.2.1.1
L’élévation de à toute puissance positive produit .
Étape 10.2.2.1.2
Multipliez par .
Étape 10.2.2.2
Additionnez et .
Étape 10.2.2.3
La réponse finale est .
Étape 10.3
Aucun maximum ni minimum local déterminé pour .
Aucun maximum ni minimum local
Aucun maximum ni minimum local
Étape 11