Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.3
Différenciez en utilisant la règle de puissance.
Étape 1.3.1
Multipliez les exposants dans .
Étape 1.3.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.3.1.2
Déplacez à gauche de .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.5
Associez et .
Étape 1.6
Simplifiez
Étape 1.6.1
Appliquez la propriété distributive.
Étape 1.6.2
Simplifiez le numérateur.
Étape 1.6.2.1
Simplifiez chaque terme.
Étape 1.6.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.6.2.1.2
Multipliez par .
Étape 1.6.2.1.3
Multipliez par .
Étape 1.6.2.2
Remettez les facteurs dans l’ordre dans .
Étape 1.6.3
Remettez les termes dans l’ordre.
Étape 1.6.4
Factorisez à partir de .
Étape 1.6.4.1
Factorisez à partir de .
Étape 1.6.4.2
Factorisez à partir de .
Étape 1.6.4.3
Factorisez à partir de .
Étape 1.6.5
Annulez le facteur commun à et .
Étape 1.6.5.1
Factorisez à partir de .
Étape 1.6.5.2
Annulez les facteurs communs.
Étape 1.6.5.2.1
Multipliez par .
Étape 1.6.5.2.2
Annulez le facteur commun.
Étape 1.6.5.2.3
Réécrivez l’expression.
Étape 1.6.5.2.4
Divisez par .
Étape 1.6.6
Appliquez la propriété distributive.
Étape 1.6.7
Multipliez par .
Étape 1.6.8
Multipliez par en additionnant les exposants.
Étape 1.6.8.1
Déplacez .
Étape 1.6.8.2
Multipliez par .
Étape 1.6.8.2.1
Élevez à la puissance .
Étape 1.6.8.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.6.8.3
Additionnez et .
Étape 1.6.9
Multipliez par .
Étape 1.6.10
Remettez les facteurs dans l’ordre dans .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.2.3.3
Remplacez toutes les occurrences de par .
Étape 2.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.7
Multipliez par .
Étape 2.2.8
Déplacez à gauche de .
Étape 2.2.9
Réécrivez comme .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.3.3.3
Remplacez toutes les occurrences de par .
Étape 2.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.7
Multipliez par .
Étape 2.3.8
Déplacez à gauche de .
Étape 2.3.9
Réécrivez comme .
Étape 2.4
Simplifiez
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Appliquez la propriété distributive.
Étape 2.4.3
Associez des termes.
Étape 2.4.3.1
Multipliez par .
Étape 2.4.3.2
Multipliez par .
Étape 2.4.3.3
Multipliez par .
Étape 2.4.3.4
Multipliez par .
Étape 2.4.3.5
Soustrayez de .
Étape 2.4.3.5.1
Déplacez .
Étape 2.4.3.5.2
Soustrayez de .
Étape 2.4.4
Remettez les termes dans l’ordre.
Étape 2.4.5
Remettez les facteurs dans l’ordre dans .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 4.1.3
Différenciez en utilisant la règle de puissance.
Étape 4.1.3.1
Multipliez les exposants dans .
Étape 4.1.3.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.1.3.1.2
Déplacez à gauche de .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 4.1.5
Associez et .
Étape 4.1.6
Simplifiez
Étape 4.1.6.1
Appliquez la propriété distributive.
Étape 4.1.6.2
Simplifiez le numérateur.
Étape 4.1.6.2.1
Simplifiez chaque terme.
Étape 4.1.6.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.1.6.2.1.2
Multipliez par .
Étape 4.1.6.2.1.3
Multipliez par .
Étape 4.1.6.2.2
Remettez les facteurs dans l’ordre dans .
Étape 4.1.6.3
Remettez les termes dans l’ordre.
Étape 4.1.6.4
Factorisez à partir de .
Étape 4.1.6.4.1
Factorisez à partir de .
Étape 4.1.6.4.2
Factorisez à partir de .
Étape 4.1.6.4.3
Factorisez à partir de .
Étape 4.1.6.5
Annulez le facteur commun à et .
Étape 4.1.6.5.1
Factorisez à partir de .
Étape 4.1.6.5.2
Annulez les facteurs communs.
Étape 4.1.6.5.2.1
Multipliez par .
Étape 4.1.6.5.2.2
Annulez le facteur commun.
Étape 4.1.6.5.2.3
Réécrivez l’expression.
Étape 4.1.6.5.2.4
Divisez par .
Étape 4.1.6.6
Appliquez la propriété distributive.
Étape 4.1.6.7
Multipliez par .
Étape 4.1.6.8
Multipliez par en additionnant les exposants.
Étape 4.1.6.8.1
Déplacez .
Étape 4.1.6.8.2
Multipliez par .
Étape 4.1.6.8.2.1
Élevez à la puissance .
Étape 4.1.6.8.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.6.8.3
Additionnez et .
Étape 4.1.6.9
Multipliez par .
Étape 4.1.6.10
Remettez les facteurs dans l’ordre dans .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Factorisez à partir de .
Étape 5.2.1
Factorisez à partir de .
Étape 5.2.2
Factorisez à partir de .
Étape 5.2.3
Factorisez à partir de .
Étape 5.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5.4
Définissez égal à et résolvez .
Étape 5.4.1
Définissez égal à .
Étape 5.4.2
Résolvez pour .
Étape 5.4.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.4.2.2
Simplifiez .
Étape 5.4.2.2.1
Réécrivez comme .
Étape 5.4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.4.2.2.3
Plus ou moins est .
Étape 5.5
Définissez égal à et résolvez .
Étape 5.5.1
Définissez égal à .
Étape 5.5.2
Résolvez pour .
Étape 5.5.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 5.5.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 5.5.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 5.6
Définissez égal à et résolvez .
Étape 5.6.1
Définissez égal à .
Étape 5.6.2
Résolvez pour .
Étape 5.6.2.1
Soustrayez des deux côtés de l’équation.
Étape 5.6.2.2
Divisez chaque terme dans par et simplifiez.
Étape 5.6.2.2.1
Divisez chaque terme dans par .
Étape 5.6.2.2.2
Simplifiez le côté gauche.
Étape 5.6.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5.6.2.2.2.2
Divisez par .
Étape 5.6.2.2.3
Simplifiez le côté droit.
Étape 5.6.2.2.3.1
Divisez par .
Étape 5.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Simplifiez chaque terme.
Étape 9.1.1
L’élévation de à toute puissance positive produit .
Étape 9.1.2
Multipliez par .
Étape 9.1.3
Multipliez par .
Étape 9.1.4
Tout ce qui est élevé à la puissance est .
Étape 9.1.5
Multipliez par .
Étape 9.1.6
L’élévation de à toute puissance positive produit .
Étape 9.1.7
Multipliez par .
Étape 9.1.8
Multipliez par .
Étape 9.1.9
Tout ce qui est élevé à la puissance est .
Étape 9.1.10
Multipliez par .
Étape 9.1.11
L’élévation de à toute puissance positive produit .
Étape 9.1.12
Multipliez par .
Étape 9.1.13
Multipliez par .
Étape 9.1.14
Tout ce qui est élevé à la puissance est .
Étape 9.1.15
Multipliez par .
Étape 9.2
Simplifiez en ajoutant des nombres.
Étape 9.2.1
Additionnez et .
Étape 9.2.2
Additionnez et .
Étape 10
Étape 10.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 10.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 10.2.1
Remplacez la variable par dans l’expression.
Étape 10.2.2
Simplifiez le résultat.
Étape 10.2.2.1
Simplifiez chaque terme.
Étape 10.2.2.1.1
Élevez à la puissance .
Étape 10.2.2.1.2
Multipliez par .
Étape 10.2.2.1.3
Multipliez par .
Étape 10.2.2.1.4
Élevez à la puissance .
Étape 10.2.2.1.5
Multipliez par .
Étape 10.2.2.1.6
Multipliez par .
Étape 10.2.2.2
Additionnez et .
Étape 10.2.2.3
La réponse finale est .
Étape 10.3
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 10.3.1
Remplacez la variable par dans l’expression.
Étape 10.3.2
Simplifiez le résultat.
Étape 10.3.2.1
Simplifiez chaque terme.
Étape 10.3.2.1.1
Élevez à la puissance .
Étape 10.3.2.1.2
Multipliez par .
Étape 10.3.2.1.3
Multipliez par .
Étape 10.3.2.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 10.3.2.1.5
Associez et .
Étape 10.3.2.1.6
Élevez à la puissance .
Étape 10.3.2.1.7
Multipliez par .
Étape 10.3.2.1.8
Multipliez par .
Étape 10.3.2.1.9
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 10.3.2.1.10
Associez et .
Étape 10.3.2.1.11
Placez le signe moins devant la fraction.
Étape 10.3.2.2
Associez les fractions.
Étape 10.3.2.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 10.3.2.2.2
Soustrayez de .
Étape 10.3.2.3
La réponse finale est .
Étape 10.4
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 10.4.1
Remplacez la variable par dans l’expression.
Étape 10.4.2
Simplifiez le résultat.
Étape 10.4.2.1
Simplifiez chaque terme.
Étape 10.4.2.1.1
Élevez à la puissance .
Étape 10.4.2.1.2
Multipliez par .
Étape 10.4.2.1.3
Multipliez par .
Étape 10.4.2.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 10.4.2.1.5
Associez et .
Étape 10.4.2.1.6
Élevez à la puissance .
Étape 10.4.2.1.7
Multipliez par .
Étape 10.4.2.1.8
Multipliez par .
Étape 10.4.2.1.9
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 10.4.2.1.10
Associez et .
Étape 10.4.2.1.11
Placez le signe moins devant la fraction.
Étape 10.4.2.2
Associez les fractions.
Étape 10.4.2.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 10.4.2.2.2
Simplifiez l’expression.
Étape 10.4.2.2.2.1
Soustrayez de .
Étape 10.4.2.2.2.2
Placez le signe moins devant la fraction.
Étape 10.4.2.3
La réponse finale est .
Étape 10.5
Comma la dérivée première n’a pas changé de signe autour de , ce n’est pas ni un maximum ni un minimum local.
Pas un maximum ni un minimum local
Étape 10.6
Comme la dérivée première a changé de signe de positive à négative autour de , est un maximum local.
est un maximum local
est un maximum local
Étape 11