Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux f(x)=(4e^x)/(x^4)
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.3.2
Multipliez par .
Étape 1.4
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 1.5
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.5.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1
Multipliez par .
Étape 1.5.2.2
Associez et .
Étape 1.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Appliquez la propriété distributive.
Étape 1.6.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.2.1
Multipliez par .
Étape 1.6.2.2
Remettez les facteurs dans l’ordre dans .
Étape 1.6.3
Remettez les termes dans l’ordre.
Étape 1.6.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.6.4.1
Factorisez à partir de .
Étape 1.6.4.2
Factorisez à partir de .
Étape 1.6.4.3
Factorisez à partir de .
Étape 1.6.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.6.5.1
Factorisez à partir de .
Étape 1.6.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.5.2.1
Factorisez à partir de .
Étape 1.6.5.2.2
Annulez le facteur commun.
Étape 1.6.5.2.3
Réécrivez l’expression.
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.2
Multipliez par .
Étape 2.4
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.5
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.5.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.5.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.4.1
Additionnez et .
Étape 2.5.4.2
Multipliez par .
Étape 2.6
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.7
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.7.2
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.1
Multipliez par .
Étape 2.7.2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.2.1
Factorisez à partir de .
Étape 2.7.2.2.2
Factorisez à partir de .
Étape 2.7.2.2.3
Factorisez à partir de .
Étape 2.8
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Factorisez à partir de .
Étape 2.8.2
Annulez le facteur commun.
Étape 2.8.3
Réécrivez l’expression.
Étape 2.9
Associez et .
Étape 2.10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.10.1
Appliquez la propriété distributive.
Étape 2.10.2
Appliquez la propriété distributive.
Étape 2.10.3
Appliquez la propriété distributive.
Étape 2.10.4
Appliquez la propriété distributive.
Étape 2.10.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.10.5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.10.5.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.10.5.1.1.1
Déplacez .
Étape 2.10.5.1.1.2
Multipliez par .
Étape 2.10.5.1.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.10.5.1.3
Multipliez par .
Étape 2.10.5.1.4
Multipliez par .
Étape 2.10.5.1.5
Multipliez par .
Étape 2.10.5.1.6
Multipliez par .
Étape 2.10.5.2
Soustrayez de .
Étape 2.10.5.3
Soustrayez de .
Appuyez ici pour voir plus d’étapes...
Étape 2.10.5.3.1
Déplacez .
Étape 2.10.5.3.2
Soustrayez de .
Étape 2.10.6
Remettez les termes dans l’ordre.
Étape 2.10.7
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.10.7.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.10.7.1.1
Factorisez à partir de .
Étape 2.10.7.1.2
Factorisez à partir de .
Étape 2.10.7.1.3
Factorisez à partir de .
Étape 2.10.7.1.4
Factorisez à partir de .
Étape 2.10.7.1.5
Factorisez à partir de .
Étape 2.10.7.2
Remettez les termes dans l’ordre.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 4.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.1.3.2
Multipliez par .
Étape 4.1.4
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 4.1.5
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.5.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.2.1
Multipliez par .
Étape 4.1.5.2.2
Associez et .
Étape 4.1.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.6.1
Appliquez la propriété distributive.
Étape 4.1.6.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.6.2.1
Multipliez par .
Étape 4.1.6.2.2
Remettez les facteurs dans l’ordre dans .
Étape 4.1.6.3
Remettez les termes dans l’ordre.
Étape 4.1.6.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.6.4.1
Factorisez à partir de .
Étape 4.1.6.4.2
Factorisez à partir de .
Étape 4.1.6.4.3
Factorisez à partir de .
Étape 4.1.6.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.6.5.1
Factorisez à partir de .
Étape 4.1.6.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.6.5.2.1
Factorisez à partir de .
Étape 4.1.6.5.2.2
Annulez le facteur commun.
Étape 4.1.6.5.2.3
Réécrivez l’expression.
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Définissez le numérateur égal à zéro.
Étape 5.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5.3.2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Définissez égal à .
Étape 5.3.2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 5.3.2.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 5.3.2.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 5.3.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Définissez égal à .
Étape 5.3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 5.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Réécrivez comme .
Étape 6.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Factorisez à partir de .
Étape 9.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.2.1
Factorisez à partir de .
Étape 9.1.2.2
Annulez le facteur commun.
Étape 9.1.2.3
Réécrivez l’expression.
Étape 9.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Élevez à la puissance .
Étape 9.2.2
Multipliez par .
Étape 9.2.3
Soustrayez de .
Étape 9.2.4
Additionnez et .
Étape 9.3
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Élevez à la puissance .
Étape 9.3.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.2.1
Factorisez à partir de .
Étape 9.3.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.2.2.1
Factorisez à partir de .
Étape 9.3.2.2.2
Annulez le facteur commun.
Étape 9.3.2.2.3
Réécrivez l’expression.
Étape 10
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 11
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1.1
Factorisez à partir de .
Étape 11.2.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1.2.1
Factorisez à partir de .
Étape 11.2.1.2.2
Annulez le facteur commun.
Étape 11.2.1.2.3
Réécrivez l’expression.
Étape 11.2.2
Élevez à la puissance .
Étape 11.2.3
La réponse finale est .
Étape 12
Ce sont les extrema locaux pour .
est un minimum local
Étape 13