Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux f(x)=1/(x^2)
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Réécrivez comme .
Étape 1.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.1.2.2
Multipliez par .
Étape 1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.3.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Associez et .
Étape 1.3.2.2
Placez le signe moins devant la fraction.
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.2
Multipliez par .
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4
Multipliez par .
Étape 2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.5.2
Associez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Comme il n’y a pas de valeur de qui rende la dérivée première égale à , il n’y a aucun extremum local.
Aucun extremum local
Étape 5
Aucun extremum local
Étape 6