Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3
Additionnez et .
Étape 2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Comme il n’y a pas de valeur de qui rende la dérivée première égale à , il n’y a aucun extremum local.
Aucun extremum local
Étape 5
Aucun extremum local