Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Étape 3.1
Laissez . Déterminez .
Étape 3.1.1
Différenciez .
Étape 3.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.1.3
Évaluez .
Étape 3.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.1.3.3
Multipliez par .
Étape 3.1.4
Différenciez en utilisant la règle de la constante.
Étape 3.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.1.4.2
Additionnez et .
Étape 3.2
Réécrivez le problème en utilisant et .
Étape 4
Associez et .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Étape 7.1
Réécrivez comme .
Étape 7.2
Simplifiez
Étape 7.2.1
Multipliez par .
Étape 7.2.2
Multipliez par .
Étape 8
Remplacez toutes les occurrences de par .
Étape 9
La réponse est la dérivée première de la fonction .