Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Appliquez la propriété distributive.
Étape 3.3
Appliquez la propriété distributive.
Étape 3.4
Remettez dans l’ordre et .
Étape 3.5
Remettez dans l’ordre et .
Étape 3.6
Élevez à la puissance .
Étape 3.7
Élevez à la puissance .
Étape 3.8
Utilisez la règle de puissance pour associer des exposants.
Étape 3.9
Additionnez et .
Étape 3.10
Multipliez par .
Étape 3.11
Multipliez par .
Étape 3.12
Additionnez et .
Étape 4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Appliquez la règle de la constante.
Étape 10
Étape 10.1
Simplifiez
Étape 10.1.1
Associez et .
Étape 10.1.2
Associez et .
Étape 10.2
Simplifiez
Étape 10.3
Remettez les termes dans l’ordre.
Étape 11
La réponse est la dérivée première de la fonction .