Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Étape 4.1
Laissez . Déterminez .
Étape 4.1.1
Différenciez .
Étape 4.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4
Multipliez par .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Associez et .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Étape 7.1
Multipliez par .
Étape 7.2
Multipliez par .
Étape 8
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Étape 10.1
Multipliez par .
Étape 10.2
Multipliez par .
Étape 11
Séparez l’intégrale unique en plusieurs intégrales.
Étape 12
Appliquez la règle de la constante.
Étape 13
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 14
Étape 14.1
Laissez . Déterminez .
Étape 14.1.1
Différenciez .
Étape 14.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 14.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 14.1.4
Multipliez par .
Étape 14.2
Réécrivez le problème en utilisant et .
Étape 15
Associez et .
Étape 16
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 17
L’intégrale de par rapport à est .
Étape 18
Simplifiez
Étape 19
Étape 19.1
Remplacez toutes les occurrences de par .
Étape 19.2
Remplacez toutes les occurrences de par .
Étape 19.3
Remplacez toutes les occurrences de par .
Étape 20
Étape 20.1
Simplifiez chaque terme.
Étape 20.1.1
Multipliez par .
Étape 20.1.2
Associez et .
Étape 20.2
Appliquez la propriété distributive.
Étape 20.3
Annulez le facteur commun de .
Étape 20.3.1
Factorisez à partir de .
Étape 20.3.2
Factorisez à partir de .
Étape 20.3.3
Annulez le facteur commun.
Étape 20.3.4
Réécrivez l’expression.
Étape 20.4
Associez et .
Étape 20.5
Multipliez .
Étape 20.5.1
Multipliez par .
Étape 20.5.2
Multipliez par .
Étape 21
Remettez les termes dans l’ordre.
Étape 22
La réponse est la dérivée première de la fonction .