Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étudiez la formule des quotients différentiels.
Étape 2
Étape 2.1
Évaluez la fonction sur .
Étape 2.1.1
Remplacez la variable par dans l’expression.
Étape 2.1.2
Simplifiez le résultat.
Étape 2.1.2.1
Simplifiez chaque terme.
Étape 2.1.2.1.1
Utilisez le théorème du binôme.
Étape 2.1.2.1.2
Appliquez la propriété distributive.
Étape 2.1.2.2
La réponse finale est .
Étape 2.2
Remettez dans l’ordre.
Étape 2.2.1
Déplacez .
Étape 2.2.2
Déplacez .
Étape 2.2.3
Déplacez .
Étape 2.2.4
Déplacez .
Étape 2.2.5
Déplacez .
Étape 2.2.6
Remettez dans l’ordre et .
Étape 2.3
Déterminez les composants de la définition.
Étape 3
Insérez les composants.
Étape 4
Étape 4.1
Simplifiez le numérateur.
Étape 4.1.1
Appliquez la propriété distributive.
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.3
Soustrayez de .
Étape 4.1.4
Additionnez et .
Étape 4.1.5
Additionnez et .
Étape 4.1.6
Additionnez et .
Étape 4.1.7
Soustrayez de .
Étape 4.1.8
Additionnez et .
Étape 4.1.9
Factorisez à partir de .
Étape 4.1.9.1
Factorisez à partir de .
Étape 4.1.9.2
Factorisez à partir de .
Étape 4.1.9.3
Factorisez à partir de .
Étape 4.1.9.4
Factorisez à partir de .
Étape 4.1.9.5
Factorisez à partir de .
Étape 4.1.9.6
Factorisez à partir de .
Étape 4.1.9.7
Factorisez à partir de .
Étape 4.2
Réduisez l’expression en annulant les facteurs communs.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.2.2
Simplifiez l’expression.
Étape 4.2.2.1
Déplacez .
Étape 4.2.2.2
Déplacez .
Étape 4.2.2.3
Remettez dans l’ordre et .
Étape 5