Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de 0 de (cos(x)+sin(x))^(1/x)
Étape 1
Utilisez les propriétés des logarithmes pour simplifier la limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez comme .
Étape 1.2
Développez en déplaçant hors du logarithme.
Étape 2
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Placez la limite dans l’exposant.
Étape 2.2
Associez et .
Étape 3
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 3.1.2
Évaluez la limite du numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Placez la limite à l’intérieur du logarithme.
Étape 3.1.2.2
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 3.1.2.3
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 3.1.2.4
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 3.1.2.5
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.5.1
Évaluez la limite de en insérant pour .
Étape 3.1.2.5.2
Évaluez la limite de en insérant pour .
Étape 3.1.2.6
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.6.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.6.1.1
La valeur exacte de est .
Étape 3.1.2.6.1.2
La valeur exacte de est .
Étape 3.1.2.6.2
Additionnez et .
Étape 3.1.2.6.3
Le logarithme naturel de est .
Étape 3.1.3
Évaluez la limite de en insérant pour .
Étape 3.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 3.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Différenciez le numérateur et le dénominateur.
Étape 3.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2.2
La dérivée de par rapport à est .
Étape 3.3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3.4
La dérivée de par rapport à est .
Étape 3.3.5
La dérivée de par rapport à est .
Étape 3.3.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.3.6.1
Réorganisez les facteurs de .
Étape 3.3.6.2
Appliquez la propriété distributive.
Étape 3.3.6.3
Associez et .
Étape 3.3.6.4
Associez et .
Étape 3.3.6.5
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.6.6
Factorisez à partir de .
Étape 3.3.6.7
Factorisez à partir de .
Étape 3.3.6.8
Factorisez à partir de .
Étape 3.3.6.9
Réécrivez comme .
Étape 3.3.6.10
Placez le signe moins devant la fraction.
Étape 3.3.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.5
Multipliez par .
Étape 4
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 4.2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 4.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 4.4
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 4.5
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 4.6
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 4.7
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 4.8
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 5
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Évaluez la limite de en insérant pour .
Étape 5.2
Évaluez la limite de en insérant pour .
Étape 5.3
Évaluez la limite de en insérant pour .
Étape 5.4
Évaluez la limite de en insérant pour .
Étape 6
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
La valeur exacte de est .
Étape 6.1.2
La valeur exacte de est .
Étape 6.1.3
Multipliez par .
Étape 6.1.4
Soustrayez de .
Étape 6.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
La valeur exacte de est .
Étape 6.2.2
La valeur exacte de est .
Étape 6.2.3
Additionnez et .
Étape 6.3
Divisez par .
Étape 6.4
Multipliez par .
Étape 6.5
Simplifiez
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :