Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Placez le terme hors de la limite car il constant par rapport à .
Étape 2
Étape 2.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 2.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 2.1.2
Évaluez la limite du numérateur.
Étape 2.1.2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.1.2.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.1.2.3
Divisez la limite en utilisant la règle du produit des limites sur la limite lorsque approche de .
Étape 2.1.2.4
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.1.2.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.1.2.6
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 2.1.2.7
Évaluez les limites en insérant pour toutes les occurrences de .
Étape 2.1.2.7.1
Évaluez la limite de en insérant pour .
Étape 2.1.2.7.2
Évaluez la limite de en insérant pour .
Étape 2.1.2.8
Simplifiez la réponse.
Étape 2.1.2.8.1
Simplifiez chaque terme.
Étape 2.1.2.8.1.1
Multipliez par .
Étape 2.1.2.8.1.2
Soustrayez de .
Étape 2.1.2.8.1.3
La valeur exacte de est .
Étape 2.1.2.8.1.4
Multipliez par .
Étape 2.1.2.8.2
Soustrayez de .
Étape 2.1.3
Évaluez la limite de en insérant pour .
Étape 2.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 2.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 2.3.1
Différenciez le numérateur et le dénominateur.
Étape 2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Évaluez .
Étape 2.3.4.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.3.4.2
La dérivée de par rapport à est .
Étape 2.3.4.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.4.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.4.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4.6
Additionnez et .
Étape 2.3.4.7
Multipliez par .
Étape 2.3.5
Simplifiez
Étape 2.3.5.1
Appliquez la propriété distributive.
Étape 2.3.5.2
Associez des termes.
Étape 2.3.5.2.1
Multipliez par .
Étape 2.3.5.2.2
Multipliez par .
Étape 2.3.5.2.3
Additionnez et .
Étape 2.3.5.3
Remettez les termes dans l’ordre.
Étape 2.3.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4
Divisez par .
Étape 3
Étape 3.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 3.2
Divisez la limite en utilisant la règle du produit des limites sur la limite lorsque approche de .
Étape 3.3
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 3.4
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 3.5
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 4
Étape 4.1
Évaluez la limite de en insérant pour .
Étape 4.2
Évaluez la limite de en insérant pour .
Étape 4.3
Évaluez la limite de en insérant pour .
Étape 4.4
Évaluez la limite de en insérant pour .
Étape 5
Étape 5.1
Simplifiez chaque terme.
Étape 5.1.1
La valeur exacte de est .
Étape 5.1.2
Multipliez par .
Étape 5.1.3
La valeur exacte de est .
Étape 5.1.4
La valeur exacte de est .
Étape 5.2
Additionnez et .
Étape 5.3
Additionnez et .
Étape 5.4
Multipliez par .
Étape 6
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :