Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 2
Comme et , appliquez le théorème des gendarmes.
Étape 3
Placez le terme hors de la limite car il constant par rapport à .
Étape 4
Étape 4.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 4.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 4.1.2
Évaluez la limite de en insérant pour .
Étape 4.1.3
Évaluez la limite du dénominateur.
Étape 4.1.3.1
Évaluez la limite.
Étape 4.1.3.1.1
Déplacez la limite dans la fonction trigonométrique car la tangente est continue.
Étape 4.1.3.1.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 4.1.3.2
Évaluez la limite de en insérant pour .
Étape 4.1.3.3
Simplifiez la réponse.
Étape 4.1.3.3.1
Multipliez par .
Étape 4.1.3.3.2
La valeur exacte de est .
Étape 4.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 4.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 4.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 4.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 4.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 4.3.1
Différenciez le numérateur et le dénominateur.
Étape 4.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 4.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.3.3.2
La dérivée de par rapport à est .
Étape 4.3.3.3
Remplacez toutes les occurrences de par .
Étape 4.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.3.6
Multipliez par .
Étape 4.3.7
Déplacez à gauche de .
Étape 5
Étape 5.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 5.2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 5.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 5.4
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 5.5
Déplacez la limite dans la fonction trigonométrique car la sécante est continue.
Étape 5.6
Placez le terme hors de la limite car il constant par rapport à .
Étape 6
Évaluez la limite de en insérant pour .
Étape 7
Étape 7.1
Simplifiez chaque terme.
Étape 7.1.1
Multipliez par .
Étape 7.1.2
Annulez le facteur commun de .
Étape 7.1.2.1
Factorisez à partir de .
Étape 7.1.2.2
Annulez le facteur commun.
Étape 7.1.2.3
Réécrivez l’expression.
Étape 7.1.3
Associez.
Étape 7.1.4
Multipliez par .
Étape 7.1.5
Simplifiez le dénominateur.
Étape 7.1.5.1
Multipliez par .
Étape 7.1.5.2
La valeur exacte de est .
Étape 7.1.5.3
Un à n’importe quelle puissance est égal à un.
Étape 7.1.6
Multipliez par .
Étape 7.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 7.4.1
Multipliez par .
Étape 7.4.2
Multipliez par .
Étape 7.4.3
Multipliez par .
Étape 7.4.4
Multipliez par .
Étape 7.5
Associez les numérateurs sur le dénominateur commun.
Étape 7.6
Additionnez et .
Étape 8
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :