Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Placez la limite à l’intérieur du logarithme.
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Le logarithme naturel de est .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.3
Simplifiez l’expression.
Étape 1.1.3.3.1
Évaluez la limite de en insérant pour .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
La dérivée de par rapport à est .
Étape 1.3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Évaluez .
Étape 1.3.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.5.3
Multipliez par .
Étape 1.3.6
Soustrayez de .
Étape 1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5
Multipliez par .
Étape 1.6
Annulez le facteur commun à et .
Étape 1.6.1
Réécrivez comme .
Étape 1.6.2
Placez le signe moins devant la fraction.
Étape 2
Étape 2.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 3
Évaluez la limite de en insérant pour .
Étape 4
Étape 4.1
Annulez le facteur commun de .
Étape 4.1.1
Annulez le facteur commun.
Étape 4.1.2
Réécrivez l’expression.
Étape 4.2
Multipliez par .