Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de 1 de ( logarithme népérien de x)/(1-x)
Étape 1
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Placez la limite à l’intérieur du logarithme.
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Le logarithme naturel de est .
Étape 1.1.3
Évaluez la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1
Évaluez la limite de en insérant pour .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
La dérivée de par rapport à est .
Étape 1.3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.5.3
Multipliez par .
Étape 1.3.6
Soustrayez de .
Étape 1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5
Multipliez par .
Étape 1.6
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Réécrivez comme .
Étape 1.6.2
Placez le signe moins devant la fraction.
Étape 2
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 3
Évaluez la limite de en insérant pour .
Étape 4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Annulez le facteur commun.
Étape 4.1.2
Réécrivez l’expression.
Étape 4.2
Multipliez par .