Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de infinity de (x^5)/(5^x)
Étape 1
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 1.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 1.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2
Placez le terme hors de la limite car il est constant par rapport à .
Étape 3
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 3.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 3.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 3.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 3.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Différenciez le numérateur et le dénominateur.
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 5
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 5.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 5.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 5.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 5.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 5.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Différenciez le numérateur et le dénominateur.
Étape 5.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.3.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 6
Placez le terme hors de la limite car il est constant par rapport à .
Étape 7
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 7.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 7.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 7.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 7.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 7.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Différenciez le numérateur et le dénominateur.
Étape 7.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.3.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 8
Placez le terme hors de la limite car il est constant par rapport à .
Étape 9
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 9.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 9.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 9.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 9.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 9.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Différenciez le numérateur et le dénominateur.
Étape 9.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 9.3.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 10
Placez le terme hors de la limite car il est constant par rapport à .
Étape 11
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 12
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Multipliez par .
Étape 12.1.2
Multipliez par .
Étape 12.1.3
Élevez à la puissance .
Étape 12.1.4
Élevez à la puissance .
Étape 12.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 12.1.6
Additionnez et .
Étape 12.2
Associez.
Étape 12.3
Associez.
Étape 12.4
Associez.
Étape 12.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 12.5.1
Multipliez par .
Étape 12.5.2
Multipliez par .
Étape 12.5.3
Multipliez par .
Étape 12.6
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 12.6.1
Élevez à la puissance .
Étape 12.6.2
Utilisez la règle de puissance pour associer des exposants.
Étape 12.6.3
Additionnez et .
Étape 12.6.4
Élevez à la puissance .
Étape 12.6.5
Utilisez la règle de puissance pour associer des exposants.
Étape 12.6.6
Additionnez et .
Étape 12.6.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 12.6.7.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 12.6.7.1.1
Élevez à la puissance .
Étape 12.6.7.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 12.6.7.2
Additionnez et .
Étape 12.7
Multipliez par .