Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Évaluez la limite.
Étape 1.1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.1.2
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.2.1.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.1.4
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.2.1.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.1.6
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Simplifiez la réponse.
Étape 1.1.2.3.1
Simplifiez chaque terme.
Étape 1.1.2.3.1.1
Simplifiez chaque terme.
Étape 1.1.2.3.1.1.1
Multipliez par .
Étape 1.1.2.3.1.1.2
Multipliez par .
Étape 1.1.2.3.1.2
Soustrayez de .
Étape 1.1.2.3.1.3
Élevez à la puissance .
Étape 1.1.2.3.1.4
Multipliez par .
Étape 1.1.2.3.2
Soustrayez de .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Évaluez la limite.
Étape 1.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.3.1.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Étape 1.1.3.3.1
Simplifiez chaque terme.
Étape 1.1.3.3.1.1
Multipliez par .
Étape 1.1.3.3.1.2
Multipliez par .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Réécrivez comme .
Étape 1.3.3
Développez à l’aide de la méthode FOIL.
Étape 1.3.3.1
Appliquez la propriété distributive.
Étape 1.3.3.2
Appliquez la propriété distributive.
Étape 1.3.3.3
Appliquez la propriété distributive.
Étape 1.3.4
Simplifiez et associez les termes similaires.
Étape 1.3.4.1
Simplifiez chaque terme.
Étape 1.3.4.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.3.4.1.2
Multipliez par en additionnant les exposants.
Étape 1.3.4.1.2.1
Déplacez .
Étape 1.3.4.1.2.2
Multipliez par .
Étape 1.3.4.1.3
Multipliez par .
Étape 1.3.4.1.4
Multipliez par .
Étape 1.3.4.1.5
Multipliez par .
Étape 1.3.4.1.6
Multipliez par .
Étape 1.3.4.2
Soustrayez de .
Étape 1.3.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.6
Évaluez .
Étape 1.3.6.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.6.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.6.3
Multipliez par .
Étape 1.3.7
Évaluez .
Étape 1.3.7.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.7.3
Multipliez par .
Étape 1.3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.10
Associez des termes.
Étape 1.3.10.1
Additionnez et .
Étape 1.3.10.2
Additionnez et .
Étape 1.3.11
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.12
Évaluez .
Étape 1.3.12.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.12.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.12.3
Multipliez par .
Étape 1.3.13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.14
Additionnez et .
Étape 1.4
Annulez le facteur commun à et .
Étape 1.4.1
Factorisez à partir de .
Étape 1.4.2
Factorisez à partir de .
Étape 1.4.3
Factorisez à partir de .
Étape 1.4.4
Annulez les facteurs communs.
Étape 1.4.4.1
Factorisez à partir de .
Étape 1.4.4.2
Annulez le facteur commun.
Étape 1.4.4.3
Réécrivez l’expression.
Étape 1.4.4.4
Divisez par .
Étape 2
Étape 2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 3
Évaluez la limite de en insérant pour .
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Multipliez par .
Étape 4.2
Soustrayez de .