Calcul infinitésimal Exemples

Trouver la tangente au point 2(x^2+y^2)^2=25(x^2-y^2) , (-3,-1)
,
Étape 1
Déterminez la dérivée première et évaluez sur et pour déterminer la pente de la droite tangente.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez les deux côtés de l’équation.
Étape 1.2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.2.3
Remplacez toutes les occurrences de par .
Étape 1.2.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Multipliez par .
Étape 1.2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.4.3
Remplacez toutes les occurrences de par .
Étape 1.2.5
Réécrivez comme .
Étape 1.2.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.1
Appliquez la propriété distributive.
Étape 1.2.6.2
Réorganisez les facteurs de .
Étape 1.3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.2.3
Remplacez toutes les occurrences de par .
Étape 1.3.3
Multipliez par .
Étape 1.3.4
Réécrivez comme .
Étape 1.3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Appliquez la propriété distributive.
Étape 1.3.5.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.2.1
Multipliez par .
Étape 1.3.5.2.2
Multipliez par .
Étape 1.3.5.3
Remettez les termes dans l’ordre.
Étape 1.4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 1.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.1
Réécrivez.
Étape 1.5.1.2
Simplifiez en ajoutant des zéros.
Étape 1.5.1.3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.3.1
Appliquez la propriété distributive.
Étape 1.5.1.3.2
Appliquez la propriété distributive.
Étape 1.5.1.3.3
Appliquez la propriété distributive.
Étape 1.5.1.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.4.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.5.1.4.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.4.2.1
Déplacez .
Étape 1.5.1.4.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.4.2.2.1
Élevez à la puissance .
Étape 1.5.1.4.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.1.4.2.3
Additionnez et .
Étape 1.5.1.4.3
Multipliez par .
Étape 1.5.1.4.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.5.1.4.5
Multipliez par .
Étape 1.5.1.4.6
Multipliez par .
Étape 1.5.1.4.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.4.7.1
Déplacez .
Étape 1.5.1.4.7.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.4.7.2.1
Élevez à la puissance .
Étape 1.5.1.4.7.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.1.4.7.3
Additionnez et .
Étape 1.5.1.4.8
Multipliez par .
Étape 1.5.2
Ajoutez aux deux côtés de l’équation.
Étape 1.5.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.1
Soustrayez des deux côtés de l’équation.
Étape 1.5.3.2
Soustrayez des deux côtés de l’équation.
Étape 1.5.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.1
Factorisez à partir de .
Étape 1.5.4.2
Factorisez à partir de .
Étape 1.5.4.3
Factorisez à partir de .
Étape 1.5.4.4
Factorisez à partir de .
Étape 1.5.4.5
Factorisez à partir de .
Étape 1.5.5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.1
Divisez chaque terme dans par .
Étape 1.5.5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.2.1.1
Annulez le facteur commun.
Étape 1.5.5.2.1.2
Réécrivez l’expression.
Étape 1.5.5.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.2.2.1
Annulez le facteur commun.
Étape 1.5.5.2.2.2
Réécrivez l’expression.
Étape 1.5.5.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.2.3.1
Annulez le facteur commun.
Étape 1.5.5.2.3.2
Divisez par .
Étape 1.5.5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.1.1
Factorisez à partir de .
Étape 1.5.5.3.1.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.1.2.1
Factorisez à partir de .
Étape 1.5.5.3.1.1.2.2
Annulez le facteur commun.
Étape 1.5.5.3.1.1.2.3
Réécrivez l’expression.
Étape 1.5.5.3.1.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.2.1
Factorisez à partir de .
Étape 1.5.5.3.1.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.2.2.1
Factorisez à partir de .
Étape 1.5.5.3.1.2.2.2
Annulez le facteur commun.
Étape 1.5.5.3.1.2.2.3
Réécrivez l’expression.
Étape 1.5.5.3.1.3
Placez le signe moins devant la fraction.
Étape 1.5.5.3.1.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.4.1
Factorisez à partir de .
Étape 1.5.5.3.1.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.4.2.1
Factorisez à partir de .
Étape 1.5.5.3.1.4.2.2
Annulez le facteur commun.
Étape 1.5.5.3.1.4.2.3
Réécrivez l’expression.
Étape 1.5.5.3.1.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.5.1
Factorisez à partir de .
Étape 1.5.5.3.1.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.1.5.2.1
Annulez le facteur commun.
Étape 1.5.5.3.1.5.2.2
Réécrivez l’expression.
Étape 1.5.5.3.1.6
Placez le signe moins devant la fraction.
Étape 1.5.5.3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.5.5.3.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.3.1
Multipliez par .
Étape 1.5.5.3.3.2
Réorganisez les facteurs de .
Étape 1.5.5.3.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.5.5.3.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.5.5.3.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.6.1
Déplacez .
Étape 1.5.5.3.6.2
Multipliez par .
Étape 1.5.5.3.7
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.7.1
Factorisez à partir de .
Étape 1.5.5.3.7.2
Factorisez à partir de .
Étape 1.5.5.3.7.3
Factorisez à partir de .
Étape 1.5.5.3.7.4
Factorisez à partir de .
Étape 1.5.5.3.7.5
Factorisez à partir de .
Étape 1.5.5.3.8
Factorisez à partir de .
Étape 1.5.5.3.9
Réécrivez comme .
Étape 1.5.5.3.10
Factorisez à partir de .
Étape 1.5.5.3.11
Factorisez à partir de .
Étape 1.5.5.3.12
Factorisez à partir de .
Étape 1.5.5.3.13
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.5.3.13.1
Réécrivez comme .
Étape 1.5.5.3.13.2
Placez le signe moins devant la fraction.
Étape 1.6
Remplacez par.
Étape 1.7
Évaluez sur sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1
Remplacez la variable par dans l’expression.
Étape 1.7.2
Remplacez la variable par dans l’expression.
Étape 1.7.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.3.1
Élevez à la puissance .
Étape 1.7.3.2
Multipliez par .
Étape 1.7.3.3
Élevez à la puissance .
Étape 1.7.3.4
Multipliez par .
Étape 1.7.3.5
Soustrayez de .
Étape 1.7.3.6
Additionnez et .
Étape 1.7.4
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.4.1
Élevez à la puissance .
Étape 1.7.4.2
Multipliez par .
Étape 1.7.4.3
Élevez à la puissance .
Étape 1.7.4.4
Multipliez par .
Étape 1.7.4.5
Additionnez et .
Étape 1.7.4.6
Additionnez et .
Étape 1.7.5
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.5.1
Multipliez par .
Étape 1.7.5.2
Multipliez par .
Étape 1.7.5.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.7.5.3.1
Factorisez à partir de .
Étape 1.7.5.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.5.3.2.1
Factorisez à partir de .
Étape 1.7.5.3.2.2
Annulez le facteur commun.
Étape 1.7.5.3.2.3
Réécrivez l’expression.
Étape 2
Insérez les valeurs de pente et de point dans la formule point-pente et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Réécrivez.
Étape 2.3.1.2
Simplifiez en ajoutant des zéros.
Étape 2.3.1.3
Appliquez la propriété distributive.
Étape 2.3.1.4
Associez et .
Étape 2.3.1.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.5.1
Multipliez par .
Étape 2.3.1.5.2
Associez et .
Étape 2.3.1.5.3
Multipliez par .
Étape 2.3.1.6
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.6.1
Déplacez à gauche de .
Étape 2.3.1.6.2
Placez le signe moins devant la fraction.
Étape 2.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.3.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3.2.3
Associez et .
Étape 2.3.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.3.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.5.1
Multipliez par .
Étape 2.3.2.5.2
Soustrayez de .
Étape 2.3.2.6
Placez le signe moins devant la fraction.
Étape 2.3.3
Écrivez en forme .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Remettez les termes dans l’ordre.
Étape 2.3.3.2
Supprimez les parenthèses.
Étape 3