Calcul infinitésimal Exemples

Trouver la tangente au point sin(y)=5x^4-5 , (1,pi)
,
Étape 1
Déterminez la dérivée première et évaluez sur et pour déterminer la pente de la droite tangente.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez les deux côtés de l’équation.
Étape 1.2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.1.2
La dérivée de par rapport à est .
Étape 1.2.1.3
Remplacez toutes les occurrences de par .
Étape 1.2.2
Réécrivez comme .
Étape 1.3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.2.3
Multipliez par .
Étape 1.3.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.2
Additionnez et .
Étape 1.4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 1.5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Divisez chaque terme dans par .
Étape 1.5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1.1
Annulez le facteur commun.
Étape 1.5.2.1.2
Divisez par .
Étape 1.6
Remplacez par.
Étape 1.7
Évaluez sur sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1
Remplacez la variable par dans l’expression.
Étape 1.7.2
Remplacez la variable par dans l’expression.
Étape 1.7.3
Un à n’importe quelle puissance est égal à un.
Étape 1.7.4
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.4.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 1.7.4.2
La valeur exacte de est .
Étape 1.7.4.3
Multipliez par .
Étape 1.7.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.5.1
Multipliez par .
Étape 1.7.5.2
Divisez par .
Étape 2
Insérez les valeurs de pente et de point dans la formule point-pente et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Réécrivez.
Étape 2.3.1.2
Simplifiez en ajoutant des zéros.
Étape 2.3.1.3
Appliquez la propriété distributive.
Étape 2.3.1.4
Multipliez par .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 3