Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Différenciez les deux côtés de l’équation.
Étape 1.2
Différenciez le côté gauche de l’équation.
Étape 1.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.1.2
La dérivée de par rapport à est .
Étape 1.2.1.3
Remplacez toutes les occurrences de par .
Étape 1.2.2
Réécrivez comme .
Étape 1.3
Différenciez le côté droit de l’équation.
Étape 1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.2
Évaluez .
Étape 1.3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.2.3
Multipliez par .
Étape 1.3.3
Différenciez en utilisant la règle de la constante.
Étape 1.3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.2
Additionnez et .
Étape 1.4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 1.5
Divisez chaque terme dans par et simplifiez.
Étape 1.5.1
Divisez chaque terme dans par .
Étape 1.5.2
Simplifiez le côté gauche.
Étape 1.5.2.1
Annulez le facteur commun de .
Étape 1.5.2.1.1
Annulez le facteur commun.
Étape 1.5.2.1.2
Divisez par .
Étape 1.6
Remplacez par.
Étape 1.7
Évaluez sur sur .
Étape 1.7.1
Remplacez la variable par dans l’expression.
Étape 1.7.2
Remplacez la variable par dans l’expression.
Étape 1.7.3
Un à n’importe quelle puissance est égal à un.
Étape 1.7.4
Simplifiez le dénominateur.
Étape 1.7.4.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 1.7.4.2
La valeur exacte de est .
Étape 1.7.4.3
Multipliez par .
Étape 1.7.5
Simplifiez l’expression.
Étape 1.7.5.1
Multipliez par .
Étape 1.7.5.2
Divisez par .
Étape 2
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Étape 2.3.1
Simplifiez .
Étape 2.3.1.1
Réécrivez.
Étape 2.3.1.2
Simplifiez en ajoutant des zéros.
Étape 2.3.1.3
Appliquez la propriété distributive.
Étape 2.3.1.4
Multipliez par .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 3