Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.3
La dérivée de par rapport à est .
Étape 1.4
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.5
Simplifiez
Étape 1.5.1
Appliquez la propriété distributive.
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Remettez les termes dans l’ordre.
Étape 1.6
Évaluez la dérivée sur .
Étape 1.7
Simplifiez
Étape 1.7.1
Simplifiez chaque terme.
Étape 1.7.1.1
Tout ce qui est élevé à la puissance est .
Étape 1.7.1.2
Multipliez par .
Étape 1.7.1.3
La valeur exacte de est .
Étape 1.7.1.4
Multipliez par .
Étape 1.7.1.5
Tout ce qui est élevé à la puissance est .
Étape 1.7.1.6
Multipliez par .
Étape 1.7.1.7
La valeur exacte de est .
Étape 1.7.1.8
Multipliez par .
Étape 1.7.2
Additionnez et .
Étape 2
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Étape 2.3.1
Additionnez et .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 3